×

zbMATH — the first resource for mathematics

The harmonic functions of mean ergodic Markov semigroups. (English) Zbl 0493.60078

MSC:
60J45 Probabilistic potential theory
60J35 Transition functions, generators and resolvents
47D07 Markov semigroups and applications to diffusion processes
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alfsen, E.M.: Compact convex sets and boundary integrals. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0209.42601
[2] Asimow, L., Ellis, A.J.: Convexity theory and its applications in functional analysis. New York-San Francisco-London: Academic Press 1980 · Zbl 0453.46013
[3] Davies, E.B.: One-parameter semigroups. New York-San Francisco-London: Academic Press 1980 · Zbl 0457.47030
[4] Dunford, N., Schwartz, J.T.: Linear operators, Part 1. New York: Interscience 1966 · Zbl 0146.12601
[5] Dynkin, E.B.: Markov processes, Vol. 1. Berlin-Heidelberg-New York: Springer 1965 · Zbl 0132.37901
[6] Dynkin, E.B.: Markov processes, Vol. 2. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0132.37701
[7] Greiner, G.: Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen. Math. Z.177, 401-423 (1981) · Zbl 0461.47016 · doi:10.1007/BF01162072
[8] Hunt, G.A.: Markov processes and potentials, I. Illinois J. Math.1, 44-93 (1957) · Zbl 0100.13804
[9] Hunt, G.A.: Markov processes and potentials, II. Illinois J. Math.1, 316-369 (1957) · Zbl 0100.13804
[10] Meyer, P.A.: Probability and potentials. Waltham: Blaisdell 1966 · Zbl 0138.10401
[11] Nagel, R.J.: Mean ergodic semigroups and invariant ideals in ordered Banach spaces. In: Foundations of Quantum Mechanics and Ordered Linear Spaces. Advanced Study Institute (Marburg 1973), pp. 309-315. Lecture Notes in Physics29. Berlin-Heidelberg-New York 1976
[12] Schaefer, H.H.: Invariant ideals of positive operators inC(X), I. Illinois J. Math.11, 703-715 (1967) · Zbl 0168.11801
[13] Schaefer, H.H.: Invariant ideals of positive operators inC(X), II. Illinois J. Math.12, 525-538 (1968) · Zbl 0167.13602
[14] Schaefer, H.H.: Banach lattices and positive operators. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0296.47023
[15] Yosida, K.: Functional analysis. Berlin-Heidelberg-New York: Springer 1965 · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.