Koerner, Frank; Richter, Claus Zur effektiven Lösung von booleschen, quadratischen Optimierungsproblemen. (German) Zbl 0493.90059 Numer. Math. 40, 99-109 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 8 Documents MSC: 90C09 Boolean programming 65K05 Numerical mathematical programming methods 90C20 Quadratic programming Keywords:quadratic boolean optimization; Lagrange duality; positive semi-definite matrix; dual problem; branch-and-bound; subgradient method PDF BibTeX XML Cite \textit{F. Koerner} and \textit{C. Richter}, Numer. Math. 40, 99--109 (1982; Zbl 0493.90059) Full Text: DOI EuDML OpenURL References: [1] Bazaraa, M.S., Goode, J.J.: A survey of various tactics for generating Lagrangian multipliers in the context of Lagrangian duality. Eur. J. Oper. Res.3, 322–338 (1979) · Zbl 0405.90062 [2] McBride, R.D., Yormark, J.S.: An implicit enumeration algorithm for quadratic integer programming. Management Sci.26, 282–296 (1980) · Zbl 0443.90067 [3] Forgó, F.: Relationship between mixed zero-one integer linear programming and certain quadratic programming problems, Studia Sci. Math. Hungarica4, 37–43 (1969) · Zbl 0186.24202 [4] Kobe, S., Hartwig, A.: Exact ground state of finite amorphous ISING systems. Comp. Phys. Comm.16, 1–4 (1978) [5] Shor, N.S.: Metodi minimisazii nedifferenziruemix funkzii i ix priloschenia. Naukova dumka, Kiev, 1979 [6] Stoer, J., Witzgall, C.: Convexity and optimization in finite dimensions I. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0203.52203 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.