Zur effektiven Lösung von booleschen, quadratischen Optimierungsproblemen. (German) Zbl 0493.90059


90C09 Boolean programming
65K05 Numerical mathematical programming methods
90C20 Quadratic programming
Full Text: DOI EuDML


[1] Bazaraa, M.S., Goode, J.J.: A survey of various tactics for generating Lagrangian multipliers in the context of Lagrangian duality. Eur. J. Oper. Res.3, 322–338 (1979) · Zbl 0405.90062 · doi:10.1016/0377-2217(79)90228-5
[2] McBride, R.D., Yormark, J.S.: An implicit enumeration algorithm for quadratic integer programming. Management Sci.26, 282–296 (1980) · Zbl 0443.90067 · doi:10.1287/mnsc.26.3.282
[3] Forgó, F.: Relationship between mixed zero-one integer linear programming and certain quadratic programming problems, Studia Sci. Math. Hungarica4, 37–43 (1969) · Zbl 0186.24202
[4] Kobe, S., Hartwig, A.: Exact ground state of finite amorphous ISING systems. Comp. Phys. Comm.16, 1–4 (1978) · doi:10.1016/0010-4655(78)90102-9
[5] Shor, N.S.: Metodi minimisazii nedifferenziruemix funkzii i ix priloschenia. Naukova dumka, Kiev, 1979
[6] Stoer, J., Witzgall, C.: Convexity and optimization in finite dimensions I. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0203.52203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.