zbMATH — the first resource for mathematics

Local root numbers and Hermitian-Galois module structure of rings of integers. (English) Zbl 0494.12010

11S45 Algebras and orders, and their zeta functions
11S37 Langlands-Weil conjectures, nonabelian class field theory
11S20 Galois theory
Full Text: DOI EuDML
[1] Borel, A., Serre, J.P.: Sur certains sous-groupes des groupes de Lie compacts. Comment. Math. Helv.27, 128-239 (1953) · Zbl 0051.01902
[2] Cassou-Noguès, Ph.: Structure galoisienne des anneaux d’entiers. Proc. L.M.S.38, 545-576 (1979) · Zbl 0425.12008
[3] Deligne, P.: Les constantes locales de l’équation fonctionelle de la fonctionL d’Artin d’une représentation orthogonale. Invent. Math.35, 299-316 (1976) · Zbl 0337.12012
[4] Fröhlich, A.: Arithmetic and Galois module structure for tame extensions. J. reine angew. Math.286-287, 380-440 (1976) · Zbl 0385.12004
[5] Fröhlich, A.: Ergebnisse der Mathematik, Bd. 1, 3. Folge. Berlin, Heidelberg, New York: Springer 1983
[6] Fröhlich, A.: Classgroups, in particular Hermitian classgroups (to appear) · Zbl 0539.12005
[7] Fröhlich, A.: Module invariants and root numbers for quaternion fields of degree 4?r. Camb. Philos. Soc.76, 393-399 (1974) · Zbl 0304.12008
[8] Fröhlich, A.: Root numbers for symplectic characters and hermitian Galois module structure. Astérisque24-25, Soc. Math. France (1975)
[9] Fröhlich, A.: Local Hermitian group modules. Quadratic form conference. Queen’s papers on pure and applied maths. No. 46. Kingston, Ont. 1977
[10] Fröhlich, A.: Symplectic local constants and Hermitian Galois module structure. Algebraic Number Theory, Int. Symposium Kyoto 1976, ed. S. Ivanaga. Tokyo: Japan Soc. Promotion Science, 1977
[11] Fröhlich, A.: On parity problems. Sem. théorie des nombres. Univ. Bordeaux 1979
[12] Martinet, J.: Character theory and ArtinL-functions. Algebraic number fields, ed. A. Fröhlich. London: Academic Press 1977
[13] Serre, J.-P.: Représentations linéaires des groupes finis, 2ème édition. Paris: Hermann 1971
[14] Tate, J.: Local constants. Algebraic number fields, ed. A. Fröhlich. London: Academic Press 1977
[15] Taylor, M.J.: On Fröhlich’s conjecture for rings of integers of tame extensions. Invent. Math.63, 41-79 (1981) · Zbl 0469.12003
[16] Taylor, M.J.: A logarithmic approach to classgroups of integral group rings. J. Algebra66, 321-353 (1980) · Zbl 0491.12007
[17] Wall, C.T.C.: Norms of units in group rings. Proc. AMS29, 593-632 (1974) · Zbl 0302.16013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.