×

zbMATH — the first resource for mathematics

Attractors: Persistence, and density of their basins. (English) Zbl 0494.58023

MSC:
37C75 Stability theory for smooth dynamical systems
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
37G99 Local and nonlocal bifurcation theory for dynamical systems
34D30 Structural stability and analogous concepts of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C40 Ordinary differential equations and systems on manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. · Zbl 0308.28010
[2] Rufus Bowen and John Franks, The periodic points of maps of the disk and the interval, Topology 15 (1976), no. 4, 337 – 342. · Zbl 0346.58010 · doi:10.1016/0040-9383(76)90026-4 · doi.org
[3] H. G. Bothe, A modification of the Kupka-Smale theorem and smooth invariant manifolds of dynamical systems, Math. Nachr. 89 (1979), 25 – 42. · Zbl 0471.58017 · doi:10.1002/mana.19790890105 · doi.org
[4] Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181 – 202. · Zbl 0311.58010 · doi:10.1007/BF01389848 · doi.org
[5] Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. · Zbl 0397.34056
[6] J. Franks and L. S. Young, preprint, Northwestern Univ., 1980.
[7] J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale; Applied Mathematical Sciences, Vol. 19. · Zbl 0346.58007
[8] Global analysis, Proceedings of Symposia in Pure Mathematics, Vols. XIV-XVI. Edited by Shiing-shen Chern and Stephen Smale, American Mathematical Society, Providence, R.I., 1970.
[9] Philip Hartman, Ordinary differential equations, S. M. Hartman, Baltimore, Md., 1973. Corrected reprint. · Zbl 0281.34001
[10] Morris W. Hirsch, Differential topology, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 33. · Zbl 0356.57001
[11] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[12] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. · Zbl 0158.40901
[13] Artur Oscar Lopes, Structural stability and hyperbolic attractors, Trans. Amer. Math. Soc. 252 (1979), 205 – 219. · Zbl 0424.58017
[14] Anthony Manning, Topological entropy and the first homology group, Dynamical systems — Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 185 – 190. Lecture Notes in Math., Vol. 468.
[15] Zbigniew Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971. · Zbl 0246.58012
[16] Z. Nitecki and M. Shub, Filtrations, decompositions, and explosions, Amer. J. Math. 97 (1975), no. 4, 1029 – 1047. · Zbl 0324.58015 · doi:10.2307/2373686 · doi.org
[17] Sam B. Nadler Jr., Hyperspaces of sets, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions; Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49. · Zbl 0432.54007
[18] Sheldon E. Newhouse, Nondensity of axiom \?(\?) on \?², Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 191 – 202.
[19] Sheldon E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9 – 18. · Zbl 0275.58016 · doi:10.1016/0040-9383(74)90034-2 · doi.org
[20] M. M. C. de Oliveira, \?\(^{0}\)-density of structurally stable vector fields, Bull. Amer. Math. Soc. 82 (1976), no. 5, 786. · Zbl 0333.58007
[21] Charles C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010 – 1021. · Zbl 0167.21804 · doi:10.2307/2373414 · doi.org
[22] J. Palis, C. Pugh, M. Shub, and D. Sullivan, Genericity theorems in topological dynamics, Dynamical systems — Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 241 – 250. Lecture Notes in Math., Vol. 468. · Zbl 0341.54053
[23] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747 – 817. · Zbl 0202.55202
[24] Michael Shub, Structurally stable diffeomorphisms are dense, Bull. Amer. Math. Soc. 78 (1972), 817 – 818. · Zbl 0265.58003
[25] M. Shub, Dynamical systems, filtrations and entropy, Bull. Amer. Math. Soc. 80 (1974), 27 – 41. · Zbl 0305.58014
[26] M. Shub, Stability and genericity for diffeomorphisms, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 493 – 514.
[27] M. Shub and S. Smale, Beyond hyperbolicity, Ann. of Math. (2) 96 (1972), 587 – 591. · Zbl 0247.58008 · doi:10.2307/1970826 · doi.org
[28] René Thom, Stabilité structurelle et morphogénèse, W. A. Benjamin, Inc., Reading, Mass., 1972 (French). Essai d’une théorie générale des modèles; Mathematical Physics Monograph Series. René Thom, Structural stability and morphogenesis, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1976. An outline of a general theory of models; Translated from the French by D. H. Fowler; With a foreword by C. H. Waddington; Second printing.
[29] Floris Takens, On Zeeman’s tolerance stability conjecture, Manifolds — Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 209 – 219.
[30] Floris Takens, Tolerance stability, Dynamical systems — Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 293 – 304. Lecture Notes in Math., Vol. 468. · Zbl 0321.54022
[31] R. F. Williams, The ”\?\?” maps of Smale and structural stability, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 329 – 334.
[32] R. F. Williams, The structure of Lorenz attractors, Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977) Springer, Berlin, 1977, pp. 94 – 112. Lecture Notes in Math., Vol. 615.
[33] -, The structure of Lorenz attractors, preprint, Northwestern Univ., 1978.
[34] E. C. Zeeman, Morse inequalities for diffeomorphisms with shoes and flows with solenoids, Dynamical Systems, Lecture Notes in Math., vol. 468, Springer-Verlag, New York, 1975, pp. 44-47. · Zbl 0308.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.