Lascoux, Alain; Schützenberger, Marcel-Paul Polynômes de Schubert. (French) Zbl 0495.14031 C. R. Acad. Sci., Paris, Sér. I 294, 447-450 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 19 ReviewsCited in 192 Documents MSC: 14M15 Grassmannians, Schubert varieties, flag manifolds 20G05 Representation theory for linear algebraic groups 14L35 Classical groups (algebro-geometric aspects) 20C32 Representations of infinite symmetric groups 14L40 Other algebraic groups (geometric aspects) 20G45 Applications of linear algebraic groups to the sciences 14F20 Étale and other Grothendieck topologies and (co)homologies 57R20 Characteristic classes and numbers in differential topology Keywords:Schubert cycles; cohomology of flag manifold; representation of symmetric group; Bruhat order; Hecke algebra; Schubert polynomials; Schur functions; Pieri formula; Hopf structure; Chern classes of flag manifold; quadratic forms on cohomology; Grothendieck ring; Young tableaux PDFBibTeX XMLCite \textit{A. Lascoux} and \textit{M.-P. Schützenberger}, C. R. Acad. Sci., Paris, Sér. I 294, 447--450 (1982; Zbl 0495.14031) Online Encyclopedia of Integer Sequences: Total number of reduced pipe dreams (a.k.a. rc-graphs) for all permutations in S_n.