×

Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator. (English) Zbl 0495.45007


MSC:

45G10 Other nonlinear integral equations
45P05 Integral operators
47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
58C15 Implicit function theorems; global Newton methods on manifolds
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] {\scM. Z. Berkolajko}, personal communication.
[2] Berkolajko, M.Z; Rutickij, Ja.B, On operators in Hölder spaces, Dokl. akad. nauk SSSR, 192, No, 6, 1199-1201, (1970), (Russian)
[3] Bondarenko, V.A; Zabrejko, P.P, The superposition operator in Hölder function spaces, Dokl. akad. nauk SSSR, 222, No. 6, 739-743, (1975), (Russian) · Zbl 0328.47040
[4] Daneš, J, Fixed point theorems, Nemytskij and Urysohn operators, and continuity of nonlinear mappings, Comm. math.k univ. carol., 11, No. 3, 481-500, (1970) · Zbl 0202.14802
[5] Gol’denstein, L.S; Markus, A.S, On a measure of noncompactness of bounded sets and linear operators, Stud. alg. math. anal., kishinjov, 45-54, (1965), (Russian)
[6] Krasnosel’skij, M.A.k, On the continuity of the operator fu(x) = f(x, u(x)), Dokl. akad. nauk, SSSR, 77, No. 2, 185-188, (1951), (Russian) · Zbl 0042.12101
[7] Krasnosel’skij, M.A, Topological methods in the theory of nonlinear integral equations, (1956), Tech. Teor. Lit Moscow, [English translation: Pergamon, Oxford, 1964] · Zbl 0072.09702
[8] Krasnosel’skij, M.A; Zabrejko, P.P; Pustyl’nik, Je.I; Sobolevskij, P.Je, Integral operators in spaces of summable functions, (1966), Nauka Moscow, [English translation: Noordhoff, Leyden, 1976]
[9] Ladyzhenskij, L.A, Conditions for the complete continuity of the Urysohn integral operator in the space of continuous functions, Dokl. akad. naukk SSSR, 96, No. 5, 1105-1108, (1951), (Russian)
[10] Nussbaum, R.D.k, The radius of the essential spectrum, Duke math. J., 38, No. 3, 473-478, (1970) · Zbl 0216.41602
[11] Pachale, H, Über den urysohnschen integraloperator, Arch. math., 10, No. 2/3, 134-136, (1959) · Zbl 0088.08301
[12] Petryshyn, W.V, A new fixed point theorem and its applications, Bull. amer. math. soc., 78, No. 2, 225-229, (1972) · Zbl 0231.47030
[13] Ruthickij, Ja.B, On a nonlinear operator in Orlicz spaces, Dopov. akad. naukk ukrssr, 3, 161-166, (1952), (Ukranian)
[14] Sadovskij, B.N; Sadovskij, B.N.k, Limit-compact and condesing operators, Usp. mat. nauk., Russ. math. surverys, 27, 85-155, (1972), (Russian) [English translation: · Zbl 0243.47033
[15] Shen-Van, Van, Complete continuity and strong continuity of the Urysohn integral operators, Dokl. akad. nauk SSSR, 151, No. 5, 1011-1013, (1963), (Russian)
[16] Zabrejko, P.P, On the continuity and complete continuity of Urysohn operators, Dokl. akad. naukk SSSR, 161, No. 5, 1007-1010, (1965), (Russian) · Zbl 0125.35701
[17] Zabrekjo, P.P, Nonlinear integral operators, Trudyk sem. funck, anal., 8, (1966), (Russian)
[18] Zabrekjo, P.P; Kolesov, Ju.S.k; Krasnosel’skij, M.A, Implicit functions and the bogoljubov-Krylov averaging principle, Dokl. akad. nauk SSSR, 184, No. 3, 111-114, (1969), (Russian) · Zbl 0181.42001
[19] Zabrejko, P.P; Appell, J, Condensing operators and implicit function theorems, Qual. approx. meth. stud. operator equations, 5, 3-14, (1980), (Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.