×

zbMATH — the first resource for mathematics

Ein operatorwertiger Hahn-Banach Satz. (German) Zbl 0495.46005

MSC:
46A22 Theorems of Hahn-Banach type; extension and lifting of functionals and operators
46L10 General theory of von Neumann algebras
46L05 General theory of \(C^*\)-algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arveson, W.B., Subalgebras of C∗-algebras, I, Acta math., 123, 141-224, (1969) · Zbl 0194.15701
[2] Bauer, H., Sur le prolongement des formes positives dans un espace vectoriel ordonné, C. R. acad. sci. Paris, 244, 289-292, (1957) · Zbl 0077.10201
[3] Bunce, J.W.; Paschke, W.L., Quasi-expectations and amenable von Neumann algebras, (), 232-236 · Zbl 0396.46054
[4] Choi, M.D., Completely positive maps on complex matrices, Linear algebra appl., 10, 285-290, (1975) · Zbl 0327.15018
[5] Choi, M.D.; Effros, E.G., Injectivity and operator spaces, J. functional analysis, 24, 156-209, (1977) · Zbl 0341.46049
[6] Choi, M.D.; Effros, E.G., Separable nuclear C∗-algebras and injectivity, Duke math. J., 43, 309-322, (1976) · Zbl 0382.46026
[7] Combes, F., Poids sur une C∗-algèbre, J. math. pures appl., 47, 57-100, (1968) · Zbl 0165.15401
[8] Connes, A., Classification of injective factors, Ann. of math., 104, 73-116, (1976) · Zbl 0343.46042
[9] Dixmier, J., LES algèbres dopérateurs dans l’espace hilbertien (algèbres de von Neumann), (1969), Gauthier-Villars Paris · Zbl 0175.43801
[10] Effros, E.G., Aspects of non-commutative order, () · Zbl 0117.09703
[11] Effros, E.G.; Lance, E.C., Tensor products of operator algebras, Advances in math., 25, 1-34, (1977) · Zbl 0372.46064
[12] Evans, D.E., Unbounded completely positive linear maps on C^∗ algebras, Pacific J. math., 66, 325-346, (1976) · Zbl 0399.46044
[13] König, H., Sublineare funktionale, Arch. math. (basel), 23, 500-508, (1972) · Zbl 0248.46007
[14] Silberman, R.J.; Yen, T., The Hahn-Banach theorem and the least upper bound property, Trans. amer. math. soc., 90, 523-526, (1959) · Zbl 0085.09502
[15] Krein, M.G.; Rutman, M.A.; Krein, M.G.; Rutman, M.A., Linear operators leaving invariant a cone in a Banach space, Uspehi mat. nauk (N.S.), Amer. math. soc. transl., 26, 3-95, (1950) · Zbl 0030.12902
[16] Lance, C., Tensor products of non-unital C∗-algebras, J. London math. soc. (2), 12, 160-168, (1976) · Zbl 0317.46050
[17] Loebl, R.I., A Hahn decomposition or linear maps, Pacific J. math., 65, 119-133, (1976) · Zbl 0312.46078
[18] Sakai, S., C∗-algebras and W∗-algebras, () · Zbl 1024.46001
[19] Schwartz, J., Two finite, non-hyperfinite, non-isomorphic factors, Comm. pure appl. math., 16, 19-26, (1963) · Zbl 0131.33201
[20] Stinespring, F., Positive functions on C∗-algebras, (), 211-216 · Zbl 0064.36703
[21] Hirzebruch, F.; Scharlau, W., Einführung in die funktionalanalysis, () · Zbl 0219.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.