×

zbMATH — the first resource for mathematics

Classification of Nash manifolds. (English) Zbl 0495.58001

MSC:
58A07 Real-analytic and Nash manifolds
57R99 Differential topology
32C05 Real-analytic manifolds, real-analytic spaces
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] R. BENEDETTI, and A. TOGNOLI, On real algebraic vector bundles, Bull. Sc. Math., 104 (1980), 89-112. · Zbl 0421.58001
[2] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, I-II, Ann. Math., 79 (1964), 109-326. · Zbl 0122.38603
[3] S. LOJASIEWICZ, Ensemble semi-analytique, IHES, 1965.
[4] J.W. MILNOR, Two complexes which are homeomorphic but combinatorially distinct, Ann. Math., 74 (1961), 575-590. · Zbl 0102.38103
[5] J.W. MILNOR, Lectures on the h-cobordism theorem, Princeton, Princeton Univ. Press, 1965. · Zbl 0161.20302
[6] T. MOSTOWSKI, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa, III 2 (1976), 245-266. · Zbl 0335.14001
[7] R. PALAIS, Equivariant real algebraic differential topology, Part I, Smoothness categories and Nash manifolds, Notes Brandeis Univ., 1972. · Zbl 0281.57015
[8] J. J. RISLER, Sur l’anneau des fonctions de Nash globales, C.R.A.S., Paris, 276 (1973), 1513-1516. · Zbl 0256.13014
[9] M. SHIOTA, On the unique factorization property of the ring of Nash functions, Publ. RIMS, Kyoto Univ., 17 (1981), 363-369. · Zbl 0503.58001
[10] M. SHIOTA, Equivalence of differentiable mappings and analytic mappings, Publ. Math. IHES, 54 (1981), 237-322. · Zbl 0516.58012
[11] M. SHIOTA, Equivalence of differentiable functions, rational functions and polynomials, Ann. Inst. Fourier, 32, 4 (1982), 167-204. · Zbl 0466.58006
[12] M. SHIOTA, Sur la factorialit√© de l’anneau des fonctions lisses rationnelles, C.R.A.S., Paris, 292 (1981), 67-70. · Zbl 0489.14013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.