×

zbMATH — the first resource for mathematics

A submartingale type inequality with applications to stochastic evolution equations. (English) Zbl 0495.60066

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60G17 Sample path properties
60H05 Stochastic integrals
60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)
Citations:
Zbl 0303.47030
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold L., Forschungsschwerpunkt Dynamische Systeme, Uniuersität Bremen (1980)
[2] Chojnowska-Michalik A. F., Stochastic differential equations in Hilbert spaces and their applications, Ph. D. (1976) · Zbl 0414.60064
[3] Curtain R. F., Lecture Notes in Control and Information Sciences 8 (1978)
[4] Da Pralo G., Stochastics 6 (2) pp 105– (1982)
[5] Gihman I. I., Die Grundlehren der math. Wissenschaften 210
[6] Kato T., Die Grundlehren der math. Wissenschaften 132 (1976)
[7] Kotelenez P., A Central Limit Theorem for Chemical Reactions with Diffusions, Ph. D. (1982) · Zbl 0523.60078
[8] Kotelenez P., Stochastic Differential Systems 36 (1981) · Zbl 0462.60034
[9] Kotelenez P., Local behaviour of Hilbert space valued stochastic integrals and the continuity of mild solutions of stochastic evolution equations. to appear in Stochastics · Zbl 0462.60034
[10] Krylov N. B., hogi Nauki I Tehniki, Ser. Sow Probl. Mat 14 pp 71– (1979)
[11] Metivier M., Stochastic Integration (1980)
[12] Pardoux E., Thése doct. Sci. math. Univ. Paris Sud (1975)
[13] Vinter R. B., A representation of solutions to stochastic delay equations (1975)
[14] Zabczyk J., Linear Stochastic Systems in Hilbert Spaces; Structural Properties and Limit Behaviour (1981) · Zbl 0462.60062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.