Application of Bloch expansion to periodic elastic and viscoelastic media. (English) Zbl 0495.73014


74E05 Inhomogeneity in solid mechanics
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
47F05 General theory of partial differential operators
Full Text: DOI


[1] Bensoussan, Asymptotic Analysis for Periodic Structures (1978)
[2] Broutman, Composite Materials 2 (1975)
[3] Dafermos, An abstract Volterra equation with application to linear viscoelasticity, J. Diff. Eqn. 7 pp 554– (1970) · Zbl 0212.45302
[4] Dafermos, Asymptotic stability in viscoelasticity, A. R. M. A. 37 pp 297– (1970)
[5] Germain, Cours de Mécanique des Milieux Continus (1973)
[6] Sanchez-Palencia, Non-homogeneous media and vibration theory (1980) · Zbl 0432.70002
[7] Sanchez-Palencia, Justification de la méthode des échelles multiples pour une classe d’équations aux dérivées partielles, Annal. Mat. Pura Appl. 116 pp 159– (1978) · Zbl 0405.35007
[8] Sve, Time harmonic waves travelling obliquely in a periodically laminated medium, J. Appl. Mech. 93 pp 477– (1971) · Zbl 0224.73018
[9] Turbe, Justification de la méthode des échelles multiples pour un type d’équations intégro-différentielles, Actes du Congrès de Florence, Equa. diff. 78 pp 287– (1978)
[10] Turbe, On the two-scale method for a class of integro-differential equations appearing in viscoelasticity, Int. J. Engng. Sc. 17 pp 857– (1979) · Zbl 0412.73002
[11] Wilcox, Scattering theory for the d’Alembert equation in exterior domains (1975) · Zbl 0299.35002
[12] Wilcox, Theory of Bloch waves, J. Anal. Math. 33 pp 146– (1978) · Zbl 0408.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.