zbMATH — the first resource for mathematics

epsilon-optimal solutions in nondifferentiable convex programming and some related questions. (English) Zbl 0495.90067

90C25 Convex programming
65K05 Numerical mathematical programming methods
Full Text: DOI
[1] A.R. Colville, ”A comparative study on nonlinear programming codes”, IBM Scientific Center Report 320-2949, New York (1968).
[2] V.F. Dem’yanov and V.N. Malozemov,Introduction to minimax (Wiley, New York, 1974).
[3] J.-B. Hiriart-Urruty, ”Lipschitzr-continuity of the approximate subdifferential of a convex function”,Mathematica Scandinavica 47 (1980) 123–134. · Zbl 0426.26005
[4] J.-B. Hiriart-Urruty, ”\(\epsilon\)-Subdifferential calculus”, presented at the Colloquium on Convex Analysis and Optimization, Imperial College, London, 19–29 February 1980 (in support of A.D. Ioffe), preprint of the Department of Applied Mathematics, Université de Clermont II (1980).
[5] W. Hock and K. Schittkowski,Test examples for nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems 187 (Springer, Berlin, 1981). · Zbl 0452.90038
[6] S.S. Kutateladze, ”Convex \(\epsilon\)-programming”,Doklady Akademii Nauk SSSR 245 (1979) 1048–1050. (Translated as:Soviet Mathematics Doklady 20 (1979) 391–393).
[7] C. Lemarechal, ”An extension of Davidon methods to non differentiable problems”Mathematical Programming Study 3 (1975) 95–109.
[8] C. Lemarechal, ”Extensions diverses des méthodes de gradient et applications”, Thèse d’Etat, Université de Paris IX-Dauphine, Paris (1980).
[9] C. Lemarechal and R. Mifflin, eds.,Nonsmooth optimization, Proceedings of a IIASA Workshop, March 28–April 8, 1977 (Pergamon Press, Oxford, 1978).
[10] C. Lemarechal, J.-J. Strodiot and A. Bihain, ”On a bundle algorithm for nonsmooth optimization”, in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear programming 4 (Academic Press, New York, 1981) pp. 245–282.
[11] V.L. Levin, ”Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions”,Matematiceskii Sbornik 79 (1969) 250–263. (Translated as:Mathematics of the USSR-Sbornik 8 (1969) 235–247). · Zbl 0187.17602
[12] K. Madsen and H. Schjaer-Jacobsen, ”Linearly constrained minimax optimization”,Mathematical Programming 14 (1978) 208–223. · Zbl 0375.65034 · doi:10.1007/BF01588966
[13] R. Mifflin, ”An algorithm for constrained optimization with semismooth functions”,Mathematics of Operations Research 2 (1977) 191–207. · Zbl 0395.90069 · doi:10.1287/moor.2.2.191
[14] R. Mifflin, ”A stable method for solving certain constrained least squares problems”,Mathematical Programming 16 (1979) 141–158. · Zbl 0407.90065 · doi:10.1007/BF01582105
[15] R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[16] R. Saigal, ”The fixed point approach to nonlinear programming”,Mathematical Programming Study 10 (1979) 142–157. · Zbl 0399.90091
[17] M. Valadier, ”Sous-différentiels d’une borne supérieure et d’une somme continue de fonctions convexes”,Comptes Rendus de l’Académie des Sciences de Paris 268 (1969) 39–42. · Zbl 0164.43302
[18] P. Wolfe, ”A method of conjugate subgradients for minimizing nondifferentiable functions”,Mathematical Programming Study 3 (1975) 145–173. · Zbl 0369.90093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.