×

zbMATH — the first resource for mathematics

Differential growth models for microbial populations. (English) Zbl 0495.92016
MSC:
92D25 Population dynamics (general)
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] T. D. Brock: Microbial Ecology. Englewood Cliffs, Prentice Hall (1966).
[2] V. H. Edwards: The influence of high substrate concentration on microbial kinetics. Biotechnol. Bioeng. 12 (1970), 679-691. · doi:10.1002/bit.260120504
[3] Z. Fencl: A theoretical analysis of continuous culture system. In ”Theoretical Basis of Continuous Culture of Microorganisms”. Publ. House Czech. Acad. Sci., Prague (1966).
[4] R. K. Finn: Inhibitory all products. J. Perm. Techn. 44 (1966), 305-321.
[5] R. I. Fletcher: A general solution for the complete Richards function. Math. Biosci. 27 (1975), 349-360. · Zbl 0324.92006 · doi:10.1016/0025-5564(75)90112-1
[6] D. Herbert R. Elsworth R. C. Telling: Continuous culture of bacteria. J. Gen. Microbiol. 14 (1956), 601-621. · doi:10.1099/00221287-14-3-601
[7] S. N. Hinshelwood: The Chemical Kinetics of the Bacterial Cell. Oxford Univ. Press, 1946.
[8] N. D. Jerusalemskii: Control principles for microbial growth. In ”Control of Biosynthesis”, Moscow 1966
[9] E. V. Kuzmin: Remark on a growth curve for microbial populations. In ”Control of Microbial Cultivation”, Moscow 1969
[10] J. E. Marsden M. McCracken: The Hopf Bifurcation and its Applications. Springer Verlag, New York-Heidelberg-Berlin, 1976. · Zbl 0346.58007
[11] R. M. May G. R. Conway M. P. Hassell T. R. E. Southwood: Time delays, density dependence and single species oscillations. J. Anim. Ecol. 43 (1974), 747-770. · doi:10.2307/3535
[12] J. Monod: Le Croissance des Cultures Bacteriennes. Hermann et Cie, Paris, 1942. · Zbl 0063.04097
[13] H. Moser: The Dynamics of Bacterial Populations Maintained in the Chernostat. Washington Carneige Publ., 1958.
[14] G. Oster J. Guckenheimer: Bifurcation phenomena in population models. pp. 327-353 in [10].
[15] E. O. Powell: Theory of the chernostat. Lab. Practice 14 (1965), 1145-1158.
[16] F. M. Scuodo J. R. Ziegler: The Golden Age of Theoretical Ecology: 1923-1940. Lecture Notes in Biomathematics No 22, Springer Verlag, Berlin-Heidelberg-New York, 1978.
[17] G. Teissier: Kinetics behaviour of heterogeneous populations in completely mixed reactors. Ann. Physiol. Biol. 12, 527-586.
[18] F. M. Williams: A model of cell growth dynamics. J. Theor. Biol. 15 (1967), 190-207. · doi:10.1016/0022-5193(67)90200-7
[19] T. B. Young D. F. Bruley H. R. Bungay III: A dynamic mathematical model of the chemostat. Biotechnol. Bioeng. 15 (1970), 747-769.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.