×

On subdesigns of symmetric designs. (English) Zbl 0496.05008


MSC:

05B05 Combinatorial aspects of block designs
05B25 Combinatorial aspects of finite geometries
05B10 Combinatorial aspects of difference sets (number-theoretic, group-theoretic, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Ahrens, R.W., Szekeres, G.: On a combinatorial generalization of 27 lines associated with a cubic surface. J. Austral. Math. Soc.10, 485-492 (1969). · Zbl 0183.52203
[2] Baartmans, A., Shrikhande, M.: Tight subdesigns of symmetric designs. Ars Combinatoria12, 303-310 (1981) · Zbl 0481.05010
[3] Bose, R.C., Shrikhande, S.S.: Baer subdesigns of symmetric balanced incomplete block designs. In: Essays in Probability and Statistics(S. Ikeda et al., Eds) p. 1-16 (1976) · Zbl 0364.62079
[4] Dembowski, P.: Finite Geometries, Berlin-Heidelberg-New York: Springer 1968 · Zbl 0159.50001
[5] Goethals, J.M., Seidel, J.J.: Strongly regular graphs derived from combinatorial designs. Canad. J. Math.22, 597-614 (1970) · Zbl 0198.29301
[6] Haemers, W.: A generalization of the Higman-Sims technique. Indag. Math.40, 445-447 (1978) · Zbl 0415.15004
[7] Haemers, W., Shrikhande, M.: Some remarks on subdesigns of symmetric designs. J. Stat. Plann. Inference3, 361-366 (1979) · Zbl 0445.05022
[8] Hall, M. Jr.: Combinatorial Theory. Waltham, Mass.: Blaisdell 1967 · Zbl 0196.02401
[9] Hall, M. Jr.: Difference sets. In: Combinatories. Proceedings (Breukelen 1974), pp. 1-26. Mathematical Centre Tracts57. Amsterdam: Mathematisch Centrum 1974
[10] Hall, M. Jr., Lane, R., Wales, D.: Designs derived from permutation groups. J. Combinatorial Theory Ser. A8, 12-22 (1970) · Zbl 0243.05020
[11] Hanani, H.: Balanced incomplete block designs and related designs. Discrete Math.11, 255-369 (1975) · Zbl 0361.62067
[12] J√≥nsson, W.: The (56, 11, 2)-design of Hall, Lane and Wales. J. Combinatorial Theory Ser. A14, 113-118 (1973) · Zbl 0257.05016
[13] Jungnickel, D.: Existence results for translation nets. In: Finite Geometries and Designs (Cameron, Hirschfeld, Hughes, eds.). Proceedings (Isle of Thorns 1980), pp. 172-196. London Mathematical Society Lecture Notes49. Cambridge-London: Cambridge University Press 1981
[14] Jungnickel, D.: On automorphism groups of divisible designs. Canad. J. Math.34, (1982) · Zbl 0465.05011
[15] Kantor, W.M.: 2-transitive symmetric designs. Trans. Amer. Math. Soc.146, 1-28 (1969) · Zbl 0207.02701
[16] Lenz, H., Jungnickel, D.: On a class of symmetric designs. Arch. Math. (Basel)33, 590-592 (1979) · Zbl 0409.05021
[17] McFarland, R.L.: A family of difference sets in non-cyclic groups. J. Combinatorial Theory Ser. A15, 1-10 (1973) · Zbl 0268.05011
[18] Menon, P.K.: On difference sets whose parameters satisfy a certain relation. Proc. Amer. Math. Soc.13, 739-745 (1962) · Zbl 0122.01504
[19] Rajkundlia, D.: Some techniques for constructing new infinite families of balanced incomplete block designs. Ph. D. dissertation, Queen’s University, Kingston, Canada 1978
[20] Seberry, J.: Some remarks on generalized Hadamard matrices and theorems of Rajkundlia on SBIBDs. In: Combinatorial Mathematics 6. Proceedings (Armidale, Australia 1978), pp. 154-164. Lecture Notes in Mathematics748. Berlin-Heidelberg-New York: Springer 1979
[21] Shrikhande, S.S.: Affine resolvable balanced incomplete block designs: A survey. Aequationes Math.14, 251-269 (1976) · Zbl 0332.05010
[22] Singer, J.: A theorem in finite projective geometry and some application to number theory. Trans. Amer. Math. Soc.43, 377-385 (1938) · Zbl 0019.00502
[23] Sprague, A.P.: Nets with Singer group fixing each parallel class. Preprint
[24] Wallis, W.D.: Construction of strongly regular graphs using affine designs. Bull. Austral. Math. Soc.4, 41-49 (1971) · Zbl 0203.30802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.