×

On the lattice of subalgebras of a Boolean algebra. (English) Zbl 0496.06010


MSC:

06E05 Structure theory of Boolean algebras
06C15 Complemented lattices, orthocomplemented lattices and posets
06B10 Lattice ideals, congruence relations
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] L. Gillman, M. Jerison: Rings of continuous functions. Van Nostrand, London, 1960. · Zbl 0093.30001
[2] P. R. Halmos: Lectures on Boolean algebras. Van Nostrand, London, 1967. · Zbl 0114.01603
[3] A. lonescu Tulcea, C. lonescu Tulcea: Topics in the theory of lifting. Springer-Verlag, New York, 1969. · Zbl 0179.46303
[4] J. L. Kelley: General Topology. Van Nostrand, London, 1955. · Zbl 0066.16604
[5] K. Kuratowski: Topology, Volume 1. Academic Press, New York, 1966. · Zbl 0158.40901
[6] D. Maharam: On a theorem of von Neumann. Proc. Amer. Math. Soc., 9 (1958), pp. 987-994. · Zbl 0102.04103
[7] J. Von Neumann, M. H. Stone: The determination of representative elements in the residual classes of a Boolean algebra. Fund. Math., 25 (1935), pp. 353 - 376. · Zbl 0012.24403
[8] J. C. Oxtoby: Measure and Category. Springer-Verlag, New York, 1970.
[9] K. P. S. Bhaskara Rao, M. Bhaskara Rao: Borel \(\sigma\)-algebra on [0, \(\Omega\)]. Manuscripta Mathematica, 5 (1971), pp. 195-198. · Zbl 0217.37803
[10] K. P. S. Bhaskara Rao, M. Bhaskara Rao: A note on the countable chain condition and sigma-finiteness of measures. Bull. Austral. Math. Soc., 6 (1972), pp. 349-353. · Zbl 0227.28003
[11] B. V. Rao: Lattice of Borel Structures. Coll. Math., 23 (1971), pp. 213 - 216. · Zbl 0328.28001
[12] H. Sarbadhikari, K. P. S. Bhaskara Rao: Complementation in the lattice of Borel structures. to appear in Coll. Math. · Zbl 0285.04003
[13] W. Sierpiński: Cardinal and Ordinal numbers. PWN, Warsaw, 1958. · Zbl 0083.26803
[14] R. Sikorski: Boolean algebras. Third Edition, Springer-Verlag, New York, 1969. · Zbl 0191.31505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.