Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev. (French) Zbl 0496.12011 Publ. Math., Inst. Hautes Étud. Sci. 54, 123-202 (1981). Reviewer: David Goss (Columbus/Ohio) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 19 ReviewsCited in 220 Documents MathOverflow Questions: Lacunary weight one modular forms MSC: 11R45 Density theorems 11R39 Langlands-Weil conjectures, nonabelian class field theory 14H52 Elliptic curves 14G99 Arithmetic problems in algebraic geometry; Diophantine geometry 11S37 Langlands-Weil conjectures, nonabelian class field theory 11F11 Holomorphic modular forms of integral weight 14K15 Arithmetic ground fields for abelian varieties Keywords:Chebotarev density; infinite Galois extension; generalized Riemann hypothesis; modular form; elliptic curve without complex multiplication; l-adic representation Citations:Zbl 0363.10015 × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] E. Artin, Über eine neue Art von L-Reihen,Hamb. Abh.,3 (1923), 89–108 (=Coll. Papers, 105–124). · JFM 49.0123.01 · doi:10.1007/BF02954618 [2] N. Bourbaki,Variétés différentielles et analytiques. Fascicule de résultats, Paris, Hermann, 1971. [3] N. Bourbaki,Groupes et Algèbres de Lie, chapitre II: “ Algèbres de Lie libres {”; chapitre III: “ Groupes de Lie {”, Paris, Hermann, 1972.}} · Zbl 0244.22007 [4] S. Chowla, On the least prime in an arithmetic progression,J. Indian Math. Soc.,1 (1934), 1–3. · Zbl 0009.00802 [5] R. Dedekind, Über die Diskriminanten endlicher Körper,Gött. Abh.,29 (1882), 1–56 (=Ges. Math. Werke, I, 351–397). · JFM 14.0059.02 [6] R. Dedekind,Vorlesungen über Zahlentheorie von P. G. Lejeune-Dirichlet, 4e éd., Braunschweig, 1893 (réimpr.: New York, Chelsea, 1968). [7] P. Deligne, Formes modulaires et représentations-adiques, Sém. Bourbaki 1968–1969, exposé 355,Lecture Notes in Math.,179, Springer-Verlag, 1971, 139–172. · doi:10.1007/BFb0058810 [8] P. Deligne, La conjecture de Weil, I,Publ. Math. I.H.E.S.,43 (1974), 273–307. [9] P. Deligne etJ.-P. Serre, Formes modulaires de poids 1,Ann. Sci. E.N.S., 4e série,7 (1974), 507–530. · Zbl 0321.10026 [10] J. Dieudonné etA. Grothendieck, Critères différentiels de régularité pour les localisés des algèbres analytiques,J. of Algebra,5 (1967), 305–324. · Zbl 0163.03201 · doi:10.1016/0021-8693(67)90042-7 [11] H. Federer,Geometric Measure Theory, Berlin, Springer-Verlag, 1969. · Zbl 0176.00801 [12] G. F. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe,Sitz. Akad. Berlin (1896), 689–703 (=Ges. Abh., II, 719–733). · JFM 27.0091.04 [13] G. H. Hardy etJ. E. Littlewood, Tauberian theorems concerning power series and Dirichlet series whose coefficients are positive,Proc. London Math. Soc., 2e série,13 (1914), 174–191 (=G. H. Hardy,Coll. Papers, VI, 510–527). · JFM 45.0389.02 · doi:10.1112/plms/s2-13.1.174 [14] G. H. Hardy etJ. E. Littlewood, Some theorems concerning Dirichlet series,Messenger of Math.,43 (1914), 134–147 (=G. H. Hardy,Coll. Papers, VI, 542–555). · JFM 45.0390.01 [15] K. Hensel, Über die Entwicklung der algebraischen Zahlen in Potenzreihen,Math. Ann.,55 (1902), 301–336. · JFM 32.0208.01 · doi:10.1007/BF01444976 [16] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero,Ann. of Math.,79 (1964), 109–326. · Zbl 0122.38603 · doi:10.2307/1970486 [17] J. Igusa, Complex Powers and Asymptotic Expansions II,J. Crelle,278–279 (1975), 307–321. · Zbl 0315.41029 · doi:10.1515/crll.1975.278-279.307 [18] J. Igusa, Some observations on higher degree characters,Amer. J. of Math.,99 (1977), 393–417. · Zbl 0373.12008 · doi:10.2307/2373827 [19] N. Iwahori etH. Matsumoto, Several remarks on projective representations of finite groups,J. Fac. Sci. Univ. Tokyo,10 (1964), 129–146. · Zbl 0125.01504 [20] H. D. Kloosterman, Asymptotische Formeln für die Fourierkoeffizienten ganzer Modulformen,Hamb. Abh.,5 (1927), 338–352. · JFM 53.0346.01 [21] M. I. Knopp etJ. Lehner,Gaps in the Fourier series of automorphic forms (à paraître). [22] J. C. Lagarias, H. L. Montgomery etA. M. Odlyzko, A Bound for the Least Prime Ideal in the Chebotarev Density Theorem,Invent. Math.,54 (1979), 271–296. · doi:10.1007/BF01390234 [23] J. C. Lagarias etA. M. Odlyzko, Effective Versions of the Chebotarev Density Theorem,Algebraic Number Fields (A. Fröhlich edit.), New York, Academic Press, 1977, 409–464. [24] S. Lang etH. Trotter, Frobenius Distributions in GL2-Extensions,Lect. Notes in Math.,504, Springer-Verlag, 1975. [25] R. P. Langlands, Automorphic representations, Shimura varieties and motives. Ein Märchen,Proc. Symp. Pure Math.,33, Amer. Math. Soc., 1979, t. 2, 205–246. · Zbl 0447.12009 [26] M. Lazard, Groupes analytiquesp-adiques,Publ. Math. I.H.E.S.,26 (1965), 1–219. · Zbl 0139.02302 [27] W. Li, Newforms and Functional Equations,Math. Ann.,212 (1975), 285–315. · doi:10.1007/BF01344466 [28] B. Mazur, Modular curves and the Eisenstein ideal,Publ. Math. I.H.E.S.,47 (1978), 33–186. · Zbl 0394.14008 [29] B. Mazur, Rational Isogenies of Prime Degree,Invent. Math.,44 (1978), 129–162. · Zbl 0386.14009 · doi:10.1007/BF01390348 [30] J. OEsterlé, Versions effectives du théorème de Chebotarev sous l’hypothèse de Riemann généralisée,Astérisque,61 (1979), 165–167. [31] A. Ogg, Abelian curves of 2-power conductor,Proc. Camb. Phil. Soc.,62 (1966), 143–148. · Zbl 0163.15403 · doi:10.1017/S0305004100039670 [32] R. Rankin, Contribution to the theory of Ramanujan’s function{\(\tau\)}(n) and similar arithmetical functions, I, II,Proc. Camb. Phil. Soc.,35 (1939), 351–372. · JFM 65.0353.01 · doi:10.1017/S0305004100021095 [33] K. Ribet, Galois Representations attached to Eigenforms with Nebentypus,Lect. Notes in Math.,601, Springer-Verlag, 1977, 17–52. · Zbl 0363.10015 [34] P. Robba, Lemmes de Schwarz et lemmes d’approximationsp-adiques en plusieurs variables,Invent. Math.,48 (1978), 245–277. · Zbl 0392.12020 · doi:10.1007/BF01390246 [35] I. Šafarevič, Corps de nombres algébriques (en russe),Proc. Int. Congr. Math., Stockholm (1962), 163–176 (trad. anglaise:Amer. Math. Transl. (2), vol. 31 (1963), 25–39). [36] L. Schoenfeld, Sharper Bounds for the Chebyshev Functions {\(\theta\)}(x) and {\(\psi\)}(x), II,Math. of Comp.,30 (1976), 337–360. · Zbl 0326.10037 [37] S. Sen, Ramification inp-adic Lie Extensions,Invent. Math.,17 (1972), 44–50. · Zbl 0242.12012 · doi:10.1007/BF01390022 [38] J.-P. Serre,Corps locaux, Paris, Hermann, 1980, 3e éd. (trad. anglaise,Local Fields, GTM 67, Springer-Verlag, 1979). [39] J.-P. Serre, Classification des variétés analytiquesp-adiques compactes,Topology,3 (1965), 409–412. · Zbl 0141.37403 · doi:10.1016/0040-9383(65)90005-4 [40] J.-P. Serre,Abelian -adic representations and elliptic curves, New York, Benjamin Publ., 1968. · Zbl 0186.25701 [41] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,Invent. Math.,15 (1972), 259–331. · Zbl 0235.14012 · doi:10.1007/BF01405086 [42] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques,L’Ens. Math.,22 (1976), 227–260. [43] J.-P. Serre, Modular forms of weight one and Galois representations,Algebraic Number Theory (A. Fröhlich edit.), New York, Academic Press, 1977, 193–268. [44] G. Shimura,Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, vol. 11, Princeton Univ. Press, 1971. · Zbl 0221.10029 [45] H. Stark, Some effective cases of the Brauer-Siegel theorem,Invent. Math.,23 (1974), 135–152. · Zbl 0278.12005 · doi:10.1007/BF01405166 [46] H. P. F. Swinnerton-Dyer, On-adic representations and congruences for coefficients of modular forms,Lecture Notes in Math.,350, Springer-Verlag, 1973, 1–55. · Zbl 0267.10032 · doi:10.1007/978-3-540-37802-0_1 [47] N. Tschebotareff, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören,Math. Ann.,95 (1926), 191–228. · JFM 51.0149.04 · doi:10.1007/BF01206606 [48] A. Weil, Zeta-functions and Mellin transforms,Proc. Bombay Coll. on Alg. Geometry, Bombay, Tata Institute, 1968, 409–426 (=OEuvres Sci., III, 179–196). [49] H. Weyl, On the volume of tubes,Amer. J. of Math.,61 (1939), 461–472 (=Ges. Abh., III, 658–669). · JFM 65.0796.01 · doi:10.2307/2371513 [50] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen,Math. Ann.,143 (1961), 75–102. · Zbl 0104.04201 · doi:10.1007/BF01351892 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.