Bukhvalov, A. V.; Danilevich, A. A. Boundary properties of analytic and harmonic functions with values in Banach space. (English. Russian original) Zbl 0496.30029 Math. Notes 31, 104-110 (1982); translation from Mat. Zametki 31, 203-214 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 11 ReviewsCited in 61 Documents MSC: 30D55 \(H^p\)-classes (MSC2000) 30E25 Boundary value problems in the complex plane Keywords:Hardy spaces; boundary values; analytic and harmonic functions; Banach space × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. V. Bukhvalov, ?Hardy spaces of vector-valued functions,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,65, 5-16 (1976). · Zbl 0345.46035 [2] A. A. Danilevich, ?Some boundary properties of abstract analytic functions, and their applications,? Mat. Sb.,100, No. 4, 507-533 (1976). [3] R. Ryan, ?Boundary values of analytic vector valued functions,? Proc. Koninkl. Nederl. Acad.,A65, No. 5, 558-572 (1962). · Zbl 0127.07001 [4] A. A. Danilevich, ?The theory of bounded analytic functions,? Sb. Mat. Anal. Teor. Funktsii,3, Izd. Mosk. Obl. Pedagog. Inst., 1-211 (1974). [5] C. Grossetete, ?Sur certaines classes de fonctions harmoniques dans le disque a valeur dans un espace vectoriel topologique localement convexe,? C.R. Acad. Sci. Paris,A273, No. 22, A1048-A1051 (1971). [6] L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977). · Zbl 0127.06102 [7] A. V. Bukhvalov, ?Spaces with mixed norm,? Vestn. Leningr. Gos. Univ., No. 19, 5-12 (1973). · Zbl 0277.46024 [8] S. D. Chatterji, ?Martingale convergence and the Radon-Nikodim theorem in Banach spaces,? Math. Scand.,22, 21-41 (1968). · Zbl 0175.14503 [9] S. Bochner and A. E. Taylor, ?Linear functionals on certain spaces of abstractly valued functions,? Ann. Math. (2),39, 913-944 (1938). · Zbl 0020.37101 · doi:10.2307/1968472 [10] A. V. Bukhvalov, ?The analytic representation of linear operators using measurable vector-functions,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 21-31 (1977). [11] A. Zygmund, Trigonometrical Series, Vol. 2, Cambridge Univ. Press. · Zbl 0011.01703 [12] A. Pelezynski, ?Banach spaces of analytic functions and absolutely summing operators,? CBMS Reg. Conf. Ser. in Math.,30, 91 (1977). [13] V. P. Khavin, ?The spaces H? and L1/H 0 1 ,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,39, 120-148 (1974). · Zbl 0358.46036 [14] T. Figiel, W. B. Johnson, and L. Tzafriri, ?On Banach lattices and spaces, having local unconditional structure, with applications to Lorentz function spaces,? J. Appr. Theory,13, No. 4, 395-412 (1975). · Zbl 0307.46007 · doi:10.1016/0021-9045(75)90023-4 [15] W. B. Johnson and L. Tzafriri, ?Some more Banach spaces which do not have local unconditional structure,? Houston J. Math.,3, No. 1, 55-60 (1977). · Zbl 0343.46014 [16] K. Huffman, Banach Spaces of Analytic Functions, Prentice-Hall (1962). · Zbl 0137.13702 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.