×

Some global solutions of the Yang-Mills equations in Minkowski space. (English) Zbl 0496.35055


MSC:

35L15 Initial value problems for second-order hyperbolic equations
81T08 Constructive quantum field theory
83A05 Special relativity
58D30 Applications of manifolds of mappings to the sciences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Costa, D., Strauss, W.: Energy Splitting. Q. Appl. Math. (to appear)
[2] Glassey, R., Strauss, W.: Commun. Math. Phys.65, 1-13 (1979) · Zbl 0402.35069
[3] Glassey, R., Strauss, W.: Commun. Math. Phys.67, 51-67 (1979) · Zbl 0425.35085
[4] Glassey, R., Strauss, W.: Propagation of the energy of Yang-Mills fields. In: Bifurcation Phenomena in Mathematical Physics and Related Topics pp. 231-241. Dordrecht: Reidel Publishing Co., 1980
[5] Moncrief, V.: Global existence of Maxwell-Klein-Gordon fields in (2 + 1)-dimensional spacetime. (to appear)
[6] Morawetz, C. S.: Proc. R. Soc.A306, 291-296 (1968)
[7] Prasad, M., Sommerfield, C.: Phys. Rev. Lett.35, 760-762 (1975)
[8] Reed, M.: Abstract nonlinear wave equations. In: Lecture Notes in Mathematics, Vol. 507. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0317.35002
[9] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II. New York: Academic Press 1975 · Zbl 0308.47002
[10] Segal, I. E.: Ann. Math.78, 339-364 1963 · Zbl 0204.16004
[11] Segal, I. E.: J. Funct. Anal.33, 175-194 1979 · Zbl 0416.58027
[12] Strauss, W.: Anais. Acad. Bras. Cienc.42, 645-651 (1970)
[13] Strauss, W.: Nonlinear invariant wave equations. In: Lecture Notes in Physics, Vol. 73, pp. 197-249 (Erice, 1977). Berlin, Heidelberg, New York: Springer 1978
[14] Taubes, C. H.: The existence of multi-monopole solutions to the static,SU (2) Yang-Mills-Higgs equations in the Prasad-Sommerfield limit. (to appear)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.