Analysis of the combined finite element and Fourier interpolation. (English) Zbl 0496.42002


42A15 Trigonometric interpolation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI EuDML


[1] Adams, R.A.: Sobolev Spaces. Academic Press: New York-San Francisco-London 1975 · Zbl 0314.46030
[2] Bramble, J.H., Hilbert, S.R.: Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math.16, 362-369 (1971) · Zbl 0214.41405
[3] Canuto, C., Fujii, H., Quarteroni, A.: Approximation of symmetry breaking bifurcations for the Rayleigh convection problem, to appear · Zbl 0534.76089
[4] Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput.38, 67-86 (1982) · Zbl 0567.41008
[5] Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland: Amsterdam 1978 · Zbl 0383.65058
[6] Dupont, T., Scott, R.: Polynomial approximation of functions in sobolev spaces. Math. Comput.34, 441-464 (1980) · Zbl 0423.65009
[7] Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: Theory and applications. CMBS Regional Conference Series in Applied Mathematics26, SIAM, Philadelphia 1977 · Zbl 0412.65058
[8] Grisvard, P.: Equations diff?rentielles abstraites. Ann. Sci. Ecole Norm. Sup.4, 311-395 (1969) · Zbl 0193.43502
[9] Kreiss, H.O., Oliger, J.: Stability of the Fourier method. SIAM J. Num Anal.16, 421-433 (1979) · Zbl 0419.65076
[10] Lions, J.L., Magenes, E.: Non homogeneous boundary value problems and applications. Springer: Berlin-Heidelberg-New York 1972 · Zbl 0227.35001
[11] Maday, Y.: Sur quelques propri?t?s des approximations par des m?thodes spectrales dans les espaces de Sobolev ? poids. Applications ? la r?solution de probl?mes non lin?aires. Th?se de troisi?me cycle. Universit? de Paris VI (1981)
[12] Pasciak, J.E.: Spectral and pseudo-spectral methods for advection equations. Math. Comput.35, 1081-1092 (1980) · Zbl 0448.65071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.