×

On subseries convergent series and m-quasi-bases in topological linear spaces. (English) Zbl 0496.46006


MSC:

46A35 Summability and bases in topological vector spaces
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bessaga, G., Peiczy?ski, A.: Selected topics in infinite-dimensional topology. Warsaw: Polish Scientific Publishers 1975 · Zbl 0304.57001
[2] Christensen, J.P.R.: Compact convex sets and compact Choquet simpexes. Invent. Math. 19, 1-4 (1973) · Zbl 0247.46009
[3] Drewnowski, L.: Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym theorems. Bull. Acad. Polon. Sei. Sér. Sci. Math. Astronom. Phys. 20, 725-731 (1972) · Zbl 0243.28011
[4] ? On minimally subspace-comparable F-spaees. J. Func. Anal. 26, 315-332 (1977) · Zbl 0366.46012
[5] ? Labuda, I., Lipecki, Z.: Existence of quasi-bases for separable topological linear spaces. Arch. Math. (Basel), 37, 454-456 (1981) · Zbl 0491.46005
[6] Halmos, P.R.: A Hilbert space problem book. Toronto: Van Nostrand 1967 · Zbl 0144.38704
[7] Klee, V.: On the borelian and projective types of linear subs-paces. Math. Seand. 6, 189-199 (1958) · Zbl 0088.08502
[8] Kli?, C.: An example of noncomplete normed (K)-space. Bull. Aead. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26, 415-420 (1978) · Zbl 0393.46017
[9] Labuda, I.: On the existence of non-trivial Saks sets and continuity of linear mappings acting on them. Ibid. 23, 885-890 (1975) · Zbl 0328.46017
[10] Mackey, G.W.: On infinite-dimensional linear spaces. Trans. Amer. Math. Soc. 57, 155-207 (1945) · Zbl 0061.24301
[11] Peck, N.T.: On nonlocally convex spaces. II. Math. Ann 178, 209-218 (1968) · Zbl 0159.41601
[12] Popoola, J.O., Tweddle, I.: On the dimension of a complete metrizable topological vector space. Canad. Math. Bull. 20, 271-272 (1977) · Zbl 0359.46007
[13] Rolewicz, S.: Metric linear spaces. Warsaw: Polish Scientific Publishers 1972 · Zbl 0226.46001
[14] Singer, I.: Bases in Banach spaces. I. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0198.16601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.