×

Scissors congruences. II. (English) Zbl 0496.52004


MSC:

52Bxx Polytopes and polyhedra

Citations:

Zbl 0406.52004
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bass, H.; Tate, J., The Milnor ring of a global field, (Algebraic \(K\)-theory II. Algebraic \(K\)-theory II, Lect. Notes in Math., No. 342 (1976), Springer: Springer Berlin-Heidelberg-New York), 349-446 · Zbl 0299.12013
[2] S. Bloch, Higher regulators, algebraic \(K\); S. Bloch, Higher regulators, algebraic \(K\) · Zbl 0958.19001
[3] Borel, A.; Serre, J.-P., Sur certains sous-groupes des groupes de Lie compacts, Comment. Math. Helv., 27, 128-139 (1953) · Zbl 0051.01902
[4] Cartan, H.; Eilenberg, S., Homological Algebra, (Princeton Math. Ser., Vol. 19 (1956), Princeton University Press: Princeton University Press Princeton) · Zbl 0933.18001
[5] Cheeger, J., Invariants of flat bundles, Proc. Int. Cong. Math., 3-6 (1974), Vancouver · Zbl 0332.55020
[6] Cheeger, J.; Simons, J., Differential characters and geometric invariants, Preprint (1973)
[7] Deodhar, V. V., On central extensions of rational points of algebraic groups, Amer. J. Math., 100, 303-386 (1978) · Zbl 0392.20027
[8] J.L. Dupont, Algebra of polytopes and homology of flag complexes, Osaka J. Math., to appear.; J.L. Dupont, Algebra of polytopes and homology of flag complexes, Osaka J. Math., to appear. · Zbl 0449.57013
[9] Dupont, J. L.; Poulsen, E. T., Generation of \(C(x)\) by a restricted set of operations, J. Pure and Appl. Algebra., 25, 155-157 (1982), (this issue) · Zbl 0496.12016
[10] Jessen, B., The algebra of polyhedra and the Dehn-Sydler theorem, Math. Scand., 22, 241-256 (1968) · Zbl 0183.49803
[11] Jessen, B., Zur Algebra der Polytope, Göttingen Nachr. Math. Phys., 47-53 (1972) · Zbl 0262.52004
[12] Jessen, B.; Thorup, A., The algebra of polytopes in affine spaces, Math. Scand., 43, 211-240 (1978) · Zbl 0398.51009
[13] Lobatchevskii, N. I., Imaginare Geometrie und Anwendung der Imaginaren Geometrie auf Enige Integrale, Abh. Gesch. Math., 19 (1904)
[14] Milnor, J. W., Introduction to Algebraic \(K\)-theory, (Annals of Math. Studies, Vol. 72 (1971), Princeton University Press: Princeton University Press Princeton) · Zbl 0237.18005
[15] Milnor, J. W., Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc., 6, 9-24 (1982) · Zbl 0486.01006
[16] Rogers, L. J., On function sums connected with the series Σ \(x^nn^2\), Proc. London Math. Soc., 4, 2, 169-189 (1907)
[17] Sah, C. H., Automorphisms of finite groups, J. Algebra, 10, 47-68 (1968) · Zbl 0159.31001
[18] Sah, C. H., Hilbert’s third problem: scissors congruence, (Res. Notes in Math., Vol. 33 (1979), Pitman: Pitman London) · Zbl 0406.52004
[19] Sah, C. H., Scissors congruences, Math. Scand., 49, 181-210 (1982), I, Gauss-Bonnet map · Zbl 0496.52003
[20] Sah, C. H.; Wagoner, J. B., Second homology of Lie groups made discrete, Comm. in Algebra, 5, 611-642 (1977) · Zbl 0375.18006
[21] Siegel, C. L., Discontinuous groups, Ann. of Math., 44, 674-689 (1943) · Zbl 0061.04504
[22] Sydler, J. P., Conditions nécessaires et sufficiantes pour l’équivalence des polyèdres l’espace Euclidien à trois dimensions, Comment. Math. Helv., 42, 43-80 (1965) · Zbl 0135.20906
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.