Schur functors and Schur complexes. (English) Zbl 0497.15020


15A72 Vector and tensor algebra, theory of invariants
05A17 Combinatorial aspects of partitions of integers
14M12 Determinantal varieties
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
20C30 Representations of finite symmetric groups
Full Text: DOI


[1] Akin, K., Thesis (1980), Brandeis University
[2] Akin, K.; Buchsbaum, D. A.; Weyman, J., Resolutions of determinantal ideals: The submaximal minors, Advan. in Math., 39, 1-30 (1981) · Zbl 0474.14035
[3] Buchsbaum, D. A., Generic free resolutions, II, Canad. J. Math., 30, No. 3, 549-572 (1978) · Zbl 0396.13013
[4] Buchsbaum, D. A.; Eisenbud, D., Generic free resolutions and a family of generically perfect ideals, Advan. in Math., 18, 245-301 (1975) · Zbl 0336.13007
[5] Buchsbaum, D. A.; Eisenbud, D., What annihilates a module, J. Algebra, 47, 231-243 (1977) · Zbl 0372.13002
[6] Carter, R. W.; Lusztig, G., On the modular representations of the general linear and symmetric groups, Math. Z., 136, 193-242 (1974) · Zbl 0298.20009
[7] Curtis, C. W.; Reiner, I., Representation Theory of Finite Groups and Associative Algebras (1962), Interscience (Wiley): Interscience (Wiley) New York/London · Zbl 0131.25601
[8] De Concini, C.; Eisenbud, D.; Processi, C., Young diagrams and determinantal varieties, Invent. Math., 56, 129-165 (1980) · Zbl 0435.14015
[9] Dieudonné, J.; Carrell, J. B., Invariant theory, old and new, Advan. in Math., 4, 1-80 (1970), Reprinted by Academic Press, New York/London, 1971 · Zbl 0196.05802
[10] Doubilet, P.; Rota, G.-C; Stein, J., Foundations of combinatorics. IX. Combinatorial methods in invariant theory, Stud. Appl. Math., 43, 1020-1058 (1971)
[11] Green, J. A., Polynomial Representations of \(GL_n\), (Lecture Notes in Mathematics No. 830 (1980), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0451.20037
[12] Higman, G., Representations of general linear groups and varieties of \(p\)-groups, (Proceedings, International Conf. Theory of Groups. Proceedings, International Conf. Theory of Groups, Austral. Nat. Univ., Canberra, Aug. 1965 (1967), Gordon & Breach: Gordon & Breach New York) · Zbl 0242.20040
[13] Knutson, D., λ-Rings and the Representation Theory of the Symmetric Group, (Lecture Notes in Mathematics No. 308 (1973), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0272.20008
[14] Lascoux, A., Polynomes symétriques, foncteurs de Schur, et Grassmanniennes, (Thèse (1977), Université Paris VII) · Zbl 0364.05008
[15] Lascoux, A., Syzgies des variétés déterminantales, Advan. in Math., 30, 202-237 (1978) · Zbl 0394.14022
[16] Lepowsky, J., Lectures on classical invariant theory (1971), Brandeis University preprint
[17] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press (Clarendon): Oxford Univ. Press (Clarendon) Oxford · Zbl 0487.20007
[18] Nielsen, H. A., Tensor functors of complexes, Aarhus University Preprint Series No. 15 (1978) · Zbl 0372.18006
[19] Stein, J., Thesis (1980), Harvard University
[20] Towber, J., Two new functors from modules to algebras, J. Algebra, 47, 80-109 (1977) · Zbl 0358.15033
[21] Weyl, H., The Classical Groups (1946), Princeton Univ. Press: Princeton Univ. Press Princeton
[22] Weyman, J., Thesis (1980), Brandeis University
[23] Désarménien, J.; Kung, J. P.S; Rota, G.-C, Invariant theory, Young bitableaux, and combinatorics, Advan. in Math., 27, 63-92 (1978) · Zbl 0373.05010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.