×

Cartesian inclusions: Locales and toposes. (English) Zbl 0497.18009


MSC:

18B25 Topoi
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
18D35 Structured objects in a category (MSC2010)
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bénabou J., Introduction to bicategories 47 pp 1– (1967) · Zbl 1375.18001
[2] Bénabou, J. 1957. Treillis locaux et paratopologies. séminaire Ehresmann. 1957. Vol. 1, 1958, exposé 2
[3] Cole J.C., J. Pure and Applied Algebra 1
[4] Dowker C.H., Proc. Lond. Math. Soc 16 pp 275– (1966) · Zbl 0136.43405
[5] Dowker C.H., Houston J. Math 3 pp 17– (1976)
[6] Fourman M.P., Sheaves and logic 753 (1979)
[7] Freyd P., Bull. Austral. Math. Soc 7 pp 1– (1972) · Zbl 0252.18001
[8] Grothendieck A., Théorie de topos 269 (1972)
[9] Isbell J.R., Math. Scand 31 pp 5– (1972)
[10] Johnstone, P.T. Factorization and pullback theorems for localic geometric morphisms. Seminaire de Mathématique Pure. Université Catholique de Louvain. Rapport no. 79
[11] Johnstone P.T., The Gleason cover of a topos · Zbl 0445.18004
[12] Johnstone P.T., Fund. Math (1979)
[13] Johnstone P.T., Topos Theory 10 (1977) · Zbl 0368.18001
[14] Kelly G.M., Review of the elements of 2-cateogires 420 pp 75– (1974)
[15] Maclane S., Categories for the Working Mathematician 5 (1971) · Zbl 0705.18001
[16] Niefield S.B., J. Pure and Applied Algebra 420 (1974)
[17] Penons J., Theories de catégories (1978)
[18] Simmons, H. 1977. A framework for topology. Proc. Wroclaw logic conference. 1977. North-Holland. to appear · Zbl 0493.06005
[19] Street R., Sydney Category Theory Seminar Report (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.