Wood, R. J. Abstract proarrows. I. (English) Zbl 0497.18012 Cah. Topol. Géom. Différ. 23, 279-290 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 22 Documents MSC: 18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010) 18A35 Categories admitting limits (complete categories), functors preserving limits, completions 18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) Keywords:bicategories with abstract proarrows; indexed limits; relative adjunctions; pointwise extensions Citations:Zbl 0285.18006; Zbl 0401.18004 PDF BibTeX XML Cite \textit{R. J. Wood}, Cah. Topologie Géom. Différ. Catégoriques 23, 279--290 (1982; Zbl 0497.18012) Full Text: Numdam EuDML OpenURL References: [1] B.J. Benabou , Introduction to bicategories , Lecture Notes in Math. 47 , Springer ( 1967 ), 1 - 77 . MR 220789 · Zbl 1375.18001 [2] B&K F. Borceux & G.M. Kelly , A notion of limit for enriched categories , Bull. Australian Math. Soc. 12 ( 1975 ), 49 - 72 . MR 369477 | Zbl 0329.18011 · Zbl 0329.18011 [3] L.F.W. Lawvere , Metric spaces, generalized logic and closed categories , P rep rint, In st. Matem., Universita di Perugia , 1973 . MR 352214 [4] P & S R. Pare & D. Schumacher , Abstract families and the adjoint functor theorems , Lecture Notes in Math. 661 , Springer ( 1978 ), 1 - 125 . MR 514193 | Zbl 0389.18002 · Zbl 0389.18002 [5] S1 R. Street , The calculus of modules , Preprint. · Zbl 0538.18005 [6] S2 R. Street , Elementary cosmoi I , Lecture Notes in Math. 420 , Springer ( 1974 ), 134 - 180 . MR 354813 | Zbl 0325.18005 · Zbl 0325.18005 [7] S&W R. Street & R.F.C. Walters , Yoneda structures on 2-categories , J. Algebra 50 ( 1978 ), 350 - 379 . MR 463261 | Zbl 0401.18004 · Zbl 0401.18004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.