×

Invariants of finite groups and their applications to combinatorics. (English) Zbl 0497.20002


MSC:

20C15 Ordinary representations and characters
05A15 Exact enumeration problems, generating functions
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
14H10 Families, moduli of curves (algebraic)
15A72 Vector and tensor algebra, theory of invariants
51F15 Reflection groups, reflection geometries
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] George E. Andrews, The theory of partitions, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. · Zbl 0371.10001
[2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. · Zbl 0175.03601
[3] W. M. Beynon and G. Lusztig, Some numerical results on the characters of exceptional Weyl groups, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 417 – 426. · Zbl 0416.20033
[4] Elwyn R. Berlekamp, F. Jessie MacWilliams, and Neil J. A. Sloane, Gleason’s theorem on self-dual codes, IEEE Trans. Information Theory IT-18 (1972), 409 – 414. · Zbl 0239.94005
[5] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). · Zbl 0186.33001
[6] N. G. deBruijn, Pólya’s theory of counting, Applied Combinatorial Mathematics , Wiley, New York, 1964, pp. 144-184.
[7] W. Burnside, Theory of groups of finite order, Dover Publications, Inc., New York, 1955. 2d ed. · Zbl 0064.25105
[8] Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778 – 782. · Zbl 0065.26103
[9] Arjeh M. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 3, 379 – 436. · Zbl 0359.20029
[10] Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. · Zbl 0283.05001
[11] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. · Zbl 0131.25601
[12] Leopold Flatto, Invariants of finite reflection groups, Enseign. Math. (2) 24 (1978), no. 3-4, 237 – 292. · Zbl 0401.20041
[13] B. Gordon, Two theorems on multipartite partitions, J. London Math. Soc. 38 (1963), 459 – 464. · Zbl 0119.04105
[14] A. M. Garsia and I. Gessel, Permutation statistics and partitions, Adv. in Math. 31 (1979), no. 3, 288 – 305. · Zbl 0431.05007
[15] J. C. Hemperly, E. H. Umberger, M. R. Murty, and V. K. Murty, Problems and Solutions: Solutions of Elementary Problems: E2442, Amer. Math. Monthly 81 (1974), no. 9, 1031 – 1033.
[16] Jürgen Herzog and Ernst Kunz , Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin-New York, 1971. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971. · Zbl 0231.13009
[17] David Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (1890), no. 4, 473 – 534 (German). · JFM 22.0133.01
[18] M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020 – 1058. · Zbl 0244.13012
[19] W. Cary Huffman, Polynomial invariants of finite linear groups of degree two, Canad. J. Math. 32 (1980), no. 2, 317 – 330. · Zbl 0442.20037
[20] Friedrich Ischebeck, Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra 11 (1969), 510 – 531 (German). · Zbl 0191.01306
[21] Marko V. Jarić and Joseph L. Birman, New algorithms for the Molien function, J. Mathematical Phys. 18 (1977), no. 7, 1456 – 1458. , https://doi.org/10.1063/1.523442 Marko V. Jarić and Joseph L. Birman, Calculation of the Molien generating function for invariants of space groups, J. Mathematical Phys. 18 (1977), no. 7, 1459 – 1465. , https://doi.org/10.1063/1.523443 Marko V. Jarić and Joseph L. Birman, Erratum: ”Calculation of the Molien generating function for invariants of space groups” (J. Mathematical Phys. 18 (1977), no. 7, 1459 – 1465), J. Mathematical Phys. 18 (1977), no. 10, 2085. · Zbl 0361.20009
[22] Marko V. Jarić and Joseph L. Birman, New algorithms for the Molien function, J. Mathematical Phys. 18 (1977), no. 7, 1456 – 1458. , https://doi.org/10.1063/1.523442 Marko V. Jarić and Joseph L. Birman, Calculation of the Molien generating function for invariants of space groups, J. Mathematical Phys. 18 (1977), no. 7, 1459 – 1465. , https://doi.org/10.1063/1.523443 Marko V. Jarić and Joseph L. Birman, Erratum: ”Calculation of the Molien generating function for invariants of space groups” (J. Mathematical Phys. 18 (1977), no. 7, 1459 – 1465), J. Mathematical Phys. 18 (1977), no. 10, 2085. · Zbl 0361.20009
[23] Jessie MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Tech. J. 42 (1963), 79 – 94.
[24] F. Jessie MacWilliams, Colin L. Mallows, and Neil J. A. Sloane, Generalizations of Gleason’s theorem on weight enumerators of self-dual codes, IEEE Trans. Information Theory IT-18 (1972), 794 – 805. · Zbl 0248.94013
[25] C. L. Mallows and N. J. A. Sloane, On the invariants of a linear group of order 336, Proc. Cambridge Philos. Soc. 74 (1973), 435 – 440. · Zbl 0268.20033
[26] G. A. Miller, H. F. Blichfeldt, and L. E. Dickson, Theory and applications of finite groups, Dover Publications, Inc., New York, 1961. · Zbl 0098.25103
[27] T. Molien, Über die Invarianten der linearen Substitutionsgruppe, Sitzungsber. König. Preuss. Akad. Wiss. (1897), 1152-1156. · JFM 28.0115.01
[28] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145-254. · JFM 63.0547.04
[29] J. Patera, R. T. Sharp, and P. Winternitz, Polynomial irreducible tensors for point groups, J. Math. Phys. 19 (1978), no. 11, 2362 – 2376. · Zbl 0464.20011
[30] J. Howard Redfield, The Theory of Group-Reduced Distributions, Amer. J. Math. 49 (1927), no. 3, 433 – 455. · JFM 53.0106.03
[31] John Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. · Zbl 0078.00805
[32] Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14, Published by The Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1963. · Zbl 0302.05001
[33] Jean-Pierre Serre, Groupes finis d’automorphismes d’anneaux locaux réguliers, Colloque d’Algèbre (Paris, 1967) Secrétariat mathématique, Paris, 1968, pp. 11 (French). · Zbl 0200.00002
[34] Jean-Pierre Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957 – 1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). · Zbl 0142.28603
[35] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274 – 304. · Zbl 0055.14305
[36] N. J. A. Sloane, Error-correcting codes and invariant theory: new applications of a nineteenth-century technique, Amer. Math. Monthly 84 (1977), no. 2, 82 – 107. · Zbl 0357.94014
[37] William Smoke, Dimension and multiplicity for graded algebras, J. Algebra 21 (1972), 149 – 173. · Zbl 0231.13006
[38] Louis Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57 – 64. · Zbl 0117.27104
[39] Louis Solomon, Partition identities and invariants of finite groups, J. Combinatorial Theory Ser. A 23 (1977), no. 2, 148 – 175. · Zbl 0361.05013
[40] T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159 – 198. · Zbl 0287.20043
[41] T. A. Springer, Invariant theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. · Zbl 0346.20020
[42] Richard P. Stanley, Relative invariants of finite groups generated by pseudoreflections, J. Algebra 49 (1977), no. 1, 134 – 148. · Zbl 0383.20029
[43] Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57 – 83. · Zbl 0384.13012
[44] Robert Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616 – 618. · Zbl 0099.36802
[45] C. W. Strom, On complete systems under certain finite groups, Bull. Amer. Math. Soc. 37 (1931), 570-574. · Zbl 0002.24603
[46] C. W. Strom, A complete system for the simple group \(G_{60}^6\), Bull. Amer. Math. Soc. 43 (1937), 438-440. · Zbl 0016.29202
[47] Carl W. Strom, Complete systems of invariants of the cyclic groups of equal order and degree, Proc. Iowa Acad. Sci. 55 (1948), 287 – 290.
[48] Jonathan M. Wahl, Equations defining rational singularities, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 231 – 263. · Zbl 0367.14004
[49] Keiichi Watanabe, Certain invariant subrings are Gorenstein. I, II, Osaka J. Math. 11 (1974), 1 – 8; ibid. 11 (1974), 379 – 388. · Zbl 0292.13008
[50] Keiichi Watanabe, Certain invariant subrings are Gorenstein. I, II, Osaka J. Math. 11 (1974), 1 – 8; ibid. 11 (1974), 379 – 388. · Zbl 0292.13008
[51] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
[52] E. M. Wright, Partitions of multi-partite numbers, Proc. Amer. Math. Soc. 7 (1956), 880 – 890. · Zbl 0071.27101
[53] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. · Zbl 0322.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.