zbMATH — the first resource for mathematics

Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. (English) Zbl 0497.22006

22C05 Compact groups
43A75 Harmonic analysis on specific compact groups
43A40 Character groups and dual objects
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
Full Text: DOI EuDML
[1] Atiyah, M.F.: Convexity and commuting Hamiltonians. Preprint, Oxford, 1981 · Zbl 0482.58013
[2] Carter, R.W.: Simple groups of Lie type. New York: Wiley 1972 · Zbl 0248.20015
[3] Danilov, V.I.: The geometry of toric varieties. Uspekhi Mat. Nauk.33, 97-154 (1978) · Zbl 0425.14013
[4] Demazure, M.: Désingularisation des variétés de Schubert généralisées. Ann. Sci. Éc. Norm. Sup.7, 53-88 (1974) · Zbl 0312.14009
[5] Demazure, M.: Une nouvelle formule des caractères. Bull. Sc. Math.98, 163-172 (1974) · Zbl 0365.17005
[6] Dixmier, J.: Algèbres enveloppants. Paris: Gauthier-Villars 1974 · Zbl 0308.17007
[7] Duistermaat, J.J.: Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution. Preprint, Utrecht, 1981 · Zbl 0504.58020
[8] Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Preprint, MIT, 1981 · Zbl 0503.58015
[9] Guillemin, V.W.: A Szegö-type theorem for symmetric spaces. Ann. of Math. studies 93, Princeton Univ. Press, Princeton, New Jersey, 1979 · Zbl 0473.53045
[10] Guillemin, V.W., Sternberg, S.: Convexity properties of the moment mapping. Preprint, MIT, 1981 · Zbl 0561.58015
[11] Guillemin, V.W., Sternberg, S.: Geometric quantization and multiplicities of group representations. Preprint, MIT, 1981 · Zbl 0503.58018
[12] Harish-Chandra: Differential operators on a semisimple Lie algebra. Amer. J. Math.79, 87-120 (1957) · Zbl 0072.01901
[13] Heckman, G.J.: Projections of orbits and asymptotic behaviour of multiplicities for compact Lie groups. Leiden: Thesis 1980
[14] Humphreys, J.E.: Introduction to Lie algebras and Representation theory. Berlin: Springer 1972 · Zbl 0254.17004
[15] King, R.C., Qubanchi, A.M.A.: The evaluation of weight multiplicities forG 2. J. Phys. A,11, (No 8) 1491-1499 (1978) · Zbl 0397.22003
[16] Kirillov, A.A.: Unitary representations of nilpotent Lie groups. Uspekhi Mat. Nauk.17, 53-104 (1962) · Zbl 0106.25001
[17] Kirillov, A.A.: Elements of the theory of representations. Berlin: Springer 1976 · Zbl 0342.22001
[18] Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Sup.6, 413-455 (1973) · Zbl 0293.22019
[19] Krämer, M.: Multiplicity free subgroups of compact connected Lie groups. Arch. Math.27, 28-36 (1976) · Zbl 0322.22011
[20] Marsden, J.E., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Reports on Math. Phys.5, 121-130 (1974) · Zbl 0327.58005
[21] Pukanszky, L.: Leçons sur les réprésentations des groupes. Paris: Dunod 1967
[22] Shephard, G.C., Todd, J.A.: Finite Unitary Reflection groups. Can. J. Math.6, 274-304 (1954) · Zbl 0055.14305
[23] Varadarajan, V.S.: Lie groups, Lie algebras and their Representations. Englewood Cliffs, NJ: Prentice Hall 1974 · Zbl 0371.22001
[24] Wallach, N.: Harmonic Analysis on Homogeneous Spaces. New York: Dekker 1973 · Zbl 0265.22022
[25] Weyl, H.: The Classical Groups. Princeton Univ. Press, Princeton, New Jersey, 1939 · Zbl 0020.20601
[26] Zelobenko, D.P.: Compact Lie groups and their Representations. Amer. Math. Soc., Providence, Rhode Island, 1973 · Zbl 0272.22006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.