×

zbMATH — the first resource for mathematics

Holomorphic maps that extend to automorphisms of a ball. (English) Zbl 0497.32011

MSC:
32D20 Removable singularities in several complex variables
32A40 Boundary behavior of holomorphic functions of several complex variables
32E35 Global boundary behavior of holomorphic functions of several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249 – 256. · Zbl 0272.32006
[2] H. Alexander, Proper holomorphic mappings in \?\(^{n}\), Indiana Univ. Math. J. 26 (1977), no. 1, 137 – 146. · Zbl 0391.32015
[3] John Erik Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 2, 529 – 569. · Zbl 0334.32020
[4] Alexander Nagel and Walter Rudin, Moebius-invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), no. 4, 841 – 865. · Zbl 0343.32017
[5] S. I. Pinčuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644-649. · Zbl 0303.32016
[6] -, On the analytic continuation of holomorphic mappings, Math. USSR-Sb. 27 (1975), 375-392. · Zbl 0366.32010
[7] -, Analytic continuation of mappings along strictly pseudoconvex hypersurfaces, Soviet Math. Dokl. 18 (1977), 1237-1240. · Zbl 0425.32006
[8] Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de \?\(^{n}\) par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91 – 97 (French, with English summary). · Zbl 0402.32001
[9] B. Wong, Characterization of the unit ball in \?\(^{n}\) by its automorphism group, Invent. Math. 41 (1977), no. 3, 253 – 257. · Zbl 0385.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.