×

zbMATH — the first resource for mathematics

Probability distributions and level crossings of shot noise models. (English) Zbl 0497.60046

MSC:
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bernier J., Rev. Inst. Int. Statist. 38 pp 49– (1970)
[2] Campbell N., Proc. Camb. Phil. Soc 15 pp 117 and 310– (1909)
[3] Chandrasekhar S., Rev. Mod. Phys. 15 (1943) · Zbl 0061.46403
[4] Chiang C. L., Introduction to stochastic processes in Biostatistics (1968) · Zbl 0172.45003
[5] Cox D. R., Point processes (1980)
[6] Daley D. J., Nature 227 pp 935– (1970)
[7] Daley D. J., J. Appl.Prob. 8 pp 128– (1971) · Zbl 0214.16104
[8] Holden H. V., Lecture Notes in Biomathematics 12 (1976)
[9] Karlin S., A First Course in Stochastic Processes (1966)
[10] Lawrance A. J., J. R.Statist. Soc.A 140 pp 1– (1979)
[11] Papoulis A., J. Appl. Prob. 8 pp 118– (1971) · Zbl 0216.46804
[12] Sampath G., Lecture Notes in Biomathematics 16 (1977)
[13] Schottky W., Ann Phys. 57 pp 541– (1918)
[14] Springer M. D., The Algebra oj Random Variables (1979) · Zbl 0399.60002
[15] Sveshnikov A. A., Applied Methods of the Theory of Random Functions (1966) · Zbl 0146.37904
[16] Thomas J. B., An Introduction to Applied Probability and Random Processes (1971) · Zbl 0261.60002
[17] Westcott M., Studies in Probability and Statistics Papers in Honour of E. J. Pitman (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.