×

zbMATH — the first resource for mathematics

Duality in vector optimization. (English) Zbl 0497.90067

MSC:
90C31 Sensitivity, stability, parametric optimization
49N15 Duality theory (optimization)
90C48 Programming in abstract spaces
Citations:
Zbl 0375.90049
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Borwein, ”Proper efficient points for maximizations with respect to cones,”SIAM Journal on Control and Optimization 15 (1977) 57–63. · Zbl 0369.90096
[2] J.M. Borwein, ”The geometry of Pareto efficiency over cones,”Mathematische Operations-forschung und Statistik 11 (1980) 235–248. · Zbl 0447.90077
[3] W.W. Breckner, ”Dualität bei Optimierungsaufgaben in halbgeordneten topologischen Vektorräumen (I)”,Revue d’Analyse Numérique et de la Théorie de l’Approximation 1 (1972) 5–35. · Zbl 0374.90071
[4] S. Brumelle, ”Duality for multiple objective convex programs,”Mathematics of Operations Research 6 (1981) 159–172. · Zbl 0497.90068
[5] B.D. Craven, ”Strong vector minimization and duality,”Zeitschrift für Angewandte Mathematik und Mechanik 60 (1980) 1–5. · Zbl 0422.90073
[6] F. di Guglielmo, ”Nonconvex duality in multiobjective optimization,”Mathematics of Operations Research 2 (1977) 285–291. · Zbl 0406.90068
[7] I. Ekeland and R. Teman.Convex analysis and variational problems (North-Holland, Amsterdam, 1976).
[8] D. Gale, H.W. Kuhn and A.W. Tucker, ”Linear programming and the theory of games,” in: T.C. Koopmans, ed.,Activity analysis of production and allocation (Wiley, New York, 1951). · Zbl 0045.09709
[9] A.M. Geoffrion, ”Proper efficiency and the theory of vector maximization,”Journal of Mathematical Analysis and Applications 22 (1968) 618–630. · Zbl 0181.22806
[10] C. Gerstewitz, A. Göpfert and U. Lampe, ”Zur Dualität in der Vektoroptimierung”, Vortragsauszug zur Jahrestagung ’Mathematische Optimierung’, Vitte/Hiddensee (1980).
[11] C. Gros, ”Generalization of Fenchel’s duality theorem for convex vector optimization,”European Journal of Operational Research 2 (1978) 368–376. · Zbl 0424.90068
[12] H. Isermann, ”On some relations between a dual pair of multiple objective linear programs,”Zeitschrift für Operations Research 22 (1978) 33–41. · Zbl 0375.90049
[13] H. Isermann, ”Duality in Multiple Objective Linear Programming,” in: S. Zionts, ed.,Multiple criteria problem solving, Lecture Notes in Economics and Mathematical Systems No. 155 (Springer, Berlin, 1978). · Zbl 0394.90097
[14] J.S.H. Kornbluth, ”Duality, indifference and sensitivity analysis in multiple objective linear programming,”Operational Research Quarterly 25 (1974) 599–614. · Zbl 0298.90042
[15] W. Krabs,Optimization and approximation (Wiley, New York, 1979). · Zbl 0409.90051
[16] R. Lehmann and W. Oettli, ”The theorem of the alternative, the key-theorem, and the vector-maximum problem,”Mathematical Programming 8 (1975), 332–344. · Zbl 0317.90040
[17] H. Nakayama, ”Duality and related theorems in convex vector optimization,” Research Report No. 4, Department of Applied Mathematics, Konan University (1980).
[18] J.W. Nieuwenhuis, ”Supremal points and generalized duality,”Mathematische Operationsforschung und Statistik 11 (1980) 41–59. · Zbl 0514.90073
[19] W. Oettli, ”A duality theorem for the nonlinear vectormaximum problem,” in: A. Prékopa, ed.,Colloquia Mathematica Societatis János Bolyai, 12. Progress in Operations Research, Eger (Hungary), 1974 (North-Holland, Amsterdam 1976). · Zbl 0344.90028
[20] R.T. Rockafellar,Conjugate duality and optimization CBMS Lecture Note Series No. 16 (SIAM, Philadelphia, PA 1974). · Zbl 0296.90036
[21] W. Rödder, ”A generalized saddlepoint theory,”European Journal of Operational Research 1 (1977) 55–59. · Zbl 0383.90099
[22] E.E. Rosinger, ”Duality and alternative in multiobjective optimization,”Proceedings of the American Mathematical Society 54 (1977) 307–312. · Zbl 0333.49030
[23] P. Schönfeld, ”Some duality theorems for the non-linear vector maximum problem,”Unternehmensforschung 14 (1970) 51–63. · Zbl 0194.20401
[24] T. Tanino and Y. Sawaragi, ”Duality theory in multiobjective programming,”Journal of Optimization Theory and Applications 27 (1979) 509–529. · Zbl 0378.90100
[25] R.M. Van Slyke and R.J.-B. Wets, ”A duality theory for abstract mathematical programs with applications to optimal control theory,”Journal of Mathematical Analysis and Applications 22 (1968) 679–706. · Zbl 0157.16004
[26] W. Vogel,Vektoroptimierung in Produkträumen, Mathematical Systems in Economics No. 35 (Verlag Anton Hain, Meisenheim am Glan, 1977). · Zbl 0392.90044
[27] J. Zowe, ”A duality theorem for a convex programming problem in order complete vector lattices,”Journal of Mathematical Analysis and Applications 50 (1975) 273–287. · Zbl 0314.90079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.