Rapoport, M.; Zink, Th. Über die lokale Zetafunktion von Shimuravarietaeten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik. (German) Zbl 0498.14010 Invent. Math. 68, 21-101 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 10 ReviewsCited in 83 Documents MSC: 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 11F27 Theta series; Weil representation; theta correspondences 11F70 Representation-theoretic methods; automorphic representations over local and global fields 14F20 Étale and other Grothendieck topologies and (co)homologies 14J25 Special surfaces 14G25 Global ground fields in algebraic geometry Keywords:Hasse-Weil zeta function; monodromy filtration; local zeta function; Shimura varieties of dimension 2; places of bad reduction; automorphic L- functions; vanishing cycles; stability of trace formula Citations:Zbl 0469.22014; Zbl 0483.14006; Zbl 0219.14006; Zbl 0303.14002; Zbl 0312.14007 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Artin, M.: Grothendieck topologies. Harvard University 1962 · Zbl 0208.48701 [2] Borel, A.: AutomorphicL-functions. Proc. of Symp. Pure Math.33 (T.2) 27-61 (1979) [3] Borel, A., Wallach, N.: Continuous Cohomology, discrete subgroups, and representations of reductive groups. Ann. of Math. Studies, Princeton University Press 1980 · Zbl 0443.22010 [4] Casselman, W.: The Hasse-Weil ?-function of some moduli varieties of dimension greater than one. Proc. of Symp. Pure Math.33, (T.2) 141-163 (1979) · Zbl 0415.14011 [5] Clemens, H.: Degenerations of Kähler manifolds. Duke Math. J.44, 215-290 (1977) · Zbl 0353.14005 · doi:10.1215/S0012-7094-77-04410-6 [6] Deligne, P.: Théorie de Hodge I; Actes ICM Nice; t. I, p. 425-430, Gauthier-Villars 1970 [7] Deligne, P.: Travaux de Shimura, Sem. Bourbaki 389. Lecture Notes, vol 244. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0225.14007 [8] Deligne, P.: Travaux de Shimura (ursprüngliche Fassung); unveröffentlicht (1971) [9] Deligne, P.: La conjecture de Weil II; Pub. Math. IHES,52 (1981) · Zbl 0456.14014 [10] Deligne, P.: Les constantes des équations fonctionelles des fonctionsL. Lecture Notes, vol 349. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0271.14011 [11] Drinfeld, V.G.: Coverings ofp-adic symmetric domains. Functional Anal. Appl.10, 107-115 (1976) · Zbl 0346.14010 · doi:10.1007/BF01077936 [12] Flath, D.: Decomposition of representations into tensor products. Proc. Symp. Pure Math.33, (T.1) 179-183 (1979) · Zbl 0414.22019 [13] Gelbart, S., Jacquet, H.: Forms ofGL(2) from the analytic point of view. Proc. Sump. Pure Math.33, (T.1) 213-251 (1979) · Zbl 0409.22013 [14] Grothendieck A.: Sur quelques points d’algèbre homologique. Tohoku Math. J.9, 119-221 (1957) · Zbl 0118.26104 [15] Jacquet, H., Langlands, R.P.: Automorphic Forms onGL(2). Lecture Notes, vol. 114. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0236.12010 [16] Kazhdan, D.: Connection of the dual space of a group with the structure of its closed subgroups. Funkt. Analysis and Its Applic.1, 63-65 (1967) · Zbl 0168.27602 · doi:10.1007/BF01075866 [17] Kneser, M.: Lectures on Galois cohomology of classical groups. Tata Institute of Fundamental Research, Bombay 1969 · Zbl 0246.14008 [18] Kottwitz, R.E.: Orbital integrals onGL 3. Am J. Math.102, 327-384 (1980) · Zbl 0437.22011 · doi:10.2307/2374243 [19] Langlands, R.P.: On the classification of irreducible representations of real algebraic groups. Notes, IAS (1973) · Zbl 0279.14007 [20] Langlands, R.P.: On the zeta-functions of some simple Shimura varieties. Can. J. Math.31, 1121-1216 (1979) · Zbl 0444.14016 · doi:10.4153/CJM-1979-102-1 [21] Langlands, R.P.: Automorphic representations, Shimura varieties, and motives. Ein Märchen. (engl.). Proc. Symp. Pure Math.33, (T.2) 205-246 (1979) · Zbl 0447.12009 [22] Langlands, R.P.: Stable conjugacy: definitions and lemmas. Can. J. Math.31, 700-725 (1979) · Zbl 0421.12013 · doi:10.4153/CJM-1979-069-2 [23] Langlands, R.P.: Base Change forGL(2). Annals of Math. Studies, Princeton 1979 [24] Langlands, R.P.: Shimura varieties and the Selberg Trace formula. Can. J. Math.29, 1292-1299 (1977) · Zbl 0385.14005 · doi:10.4153/CJM-1977-129-2 [25] Langlands, R.P.: Sur la mauvaise réduction d’une variété de Shimura. Astérisque65, 125-154 (1979) · Zbl 0469.22014 [26] Langlands, R.P.: Les débuts d’une formule de traces stable. Notes pour un cours donné à l’Ecole Normale des Jeunes Filles, 1980 [27] Mumford, D.: An algebraic surface withK ample, (K 2)=9,p g =q=0. Am. J. Math.101, 233-244 (1979) · Zbl 0433.14021 · doi:10.2307/2373947 [28] Mustafin, G.: Nonarchimedean uniformization. Math. USSR-Sb.34, 187-214 (1978) · Zbl 0411.14006 · doi:10.1070/SM1978v034n02ABEH001156 [29] Ono, T.: On Tamagawa numbers. Proc. Symp. Pure Math.9, 122-132 (1966) · Zbl 0223.20050 [30] Rapoport, M.: On the bad reduction of Shimura varieties associated to certain unitary groups. In Vorbereitung · Zbl 0716.14010 [31] Rogawski, J.: An aplication of the building to orbital integrals. Comp. Mat.,42, 417-423 (1981) · Zbl 0471.22020 [32] Rogawski, J.: Automorphic forms on a unitary group in three variables. In Vorbereitung · Zbl 0724.11031 [33] Schmid, W.: Variation of Hodge structures: the singularities of the period mapping, Invent. Math.22, 211-320 (1973) · Zbl 0278.14003 · doi:10.1007/BF01389674 [34] Serre, J-P.: Facteurs, locaux des fonctions zéta des variétés algébriques (définitions et conjectures); Sem. Delange-Pisot-Poitou, 1970 [35] Shelstad, D.: Characters and inner forms of a quasi-split group over ?. Comp. Math.39, 11-46 (1979) · Zbl 0431.22011 [36] Steenbrinck, J.: Limits of Hodge structures. Invent. Math.31, 229-257 (1976) · doi:10.1007/BF01403146 [37] Tate, J.: Number theoretic background. Proc. Symp. Pure Math.33, (T.2) 3-26 (1979) · Zbl 0422.12007 [38] Wallach, N.: On the Selberg trace formula. Bull. AMS82, 171-195 (1976) · Zbl 0351.22008 · doi:10.1090/S0002-9904-1976-13979-1 [39] Zink, Th.: Über die schlechte Reduktion einer Shimuravarietät. Comp. Math. im Druck (1982) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.