Semi-groupes d’entiers et application aux branches. (French) Zbl 0498.14016


14H20 Singularities of curves, local rings
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
13H15 Multiplicity theory and related topics
Full Text: DOI


[1] Zariski, O, Algebraic surfaces, (1971), Springer-Verlag Berlin · Zbl 0219.14020
[2] Van-der-Waerden, Einführung in die algebraische geometrie, (1973), Springer-Verlag Berlin · Zbl 0264.14001
[3] Zariski, O, Studies in equisingularity, III, Amer. J. math., 90, 961-1023, (1968) · Zbl 0189.21405
[4] Abhyankar, S, Inversion and invariance of characteristic pairs, Amer. J. math., 89, 363-372, (1967) · Zbl 0162.34103
[5] Matsuoka, T, On the degree of singularity of one-dimensional analytically irreducible Noetherian local rings, J. math. Kyoto univ., 11, (1971) · Zbl 0224.13017
[6] Kunz, E, The value-semigroup of a one-dimentional Gorenstein ring, (), 748-751 · Zbl 0197.31401
[7] {\scJ. Bertin et P. Carbonne}, Différentielles de torsion en un point singulier, á paraître. · Zbl 0268.14006
[8] Bertin, J; Carbonne, P, C. R. acad. sci. Sér. A, 280, 1745-1748, (1975)
[9] Zariski, O, General theory of saturation and of satured local rings, II, Amer. J. math., 93, 872-964, (1971) · Zbl 0228.13007
[10] Abhyankar, S; Moh, T, Newton-Puiseux expansion and generalized tschirnhausen transformation II, J. reine angew. math., 261, 29-54, (1973) · Zbl 0272.12102
[11] Beresinky, H, Semigroups corresponding to algebroïd branches in the plane, (), 381-384 · Zbl 0218.14003
[12] Merle, M, Idéal jacobien, courbe polaire et équisingularité, Thèse de spécialité, (1974), (Paris VII)
[13] Herzog, J, Generators and relations of abelian semigroups and semigroups rings, Manuscripta math., 3, (1970) · Zbl 0211.33801
[14] Herzog, J; Kunz, E, Die wertehalbgruppe eines lokalen rings der dimension 1, Ber. heidelberger akad. wiss., 2, (1971) · Zbl 0212.06102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.