×

zbMATH — the first resource for mathematics

Automorphism groups of FC-groups. (English) Zbl 0498.20025

MSC:
20F28 Automorphism groups of groups
20F24 FC-groups and their generalizations
20E36 Automorphisms of infinite groups
20E25 Local properties of groups
20F50 Periodic groups; locally finite groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Baer, Finite extensions of abelian groups with minimum condition. Trans. Amer. Math. Soc.79, 521-540 (1955). · Zbl 0065.01001 · doi:10.1090/S0002-9947-1955-0071425-9
[2] R. S. Dark, A complete group of odd order. Math. Proc. Cambridge Philos. Soc.77, 21-28 (1975). · Zbl 0303.20018 · doi:10.1017/S0305004100049392
[3] Ju. M. Gor?akov, Locally normal groups. Sibirski Mat. ?.12, 1259-1272 (1971).
[4] P. Hall, The classification of prime-power groups. J. Reine Angew. Math.182, 130-141 (1940). · JFM 66.0081.01 · doi:10.1515/crll.1940.182.130
[5] B. Hartley, Subgroups of locally normal groups. Compositio Mathematica32, 185-201 (1976). · Zbl 0335.20017
[6] B. Hartley, Profinite and residually finite groups. Rocky Mountain J. Math.7, 193-217 (1977). · Zbl 0377.20023 · doi:10.1216/RMJ-1977-7-2-193
[7] E.Hewitt and K. A.Ross, Abstract Harmonic Analysis, I. Berlin-G?ttingen-Heidelberg 1963. · Zbl 0115.10603
[8] M. V. Horo?evskii, Complete groups of odd order. Algebra i Logika13, 63-76 (1974).
[9] P. Plaumann, Automorphismengruppen diskreter Gruppen als topologische Gruppen. Arch. Math.29, 32-33 (1977). · Zbl 0365.22008 · doi:10.1007/BF01220370
[10] S. E. Stonehewer, Locally solubleFC-groups. Arch. Math.16, 158-177 (1965). · Zbl 0135.04803 · doi:10.1007/BF01220016
[11] S. E. Stonehewer, Automorphisms of locally nilpotentFC-groups. Math. Z.148, 85-88 (1976). · Zbl 0318.20017 · doi:10.1007/BF01187873
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.