×

The zeros of functions in Nevanlinna’s area class. (English) Zbl 0498.30040


MSC:

30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] E. Beller,Zeros of A p functions and related classes of analytic functions, Israel J. Math.22 (1975), 68–80. · Zbl 0322.30028
[2] M. M. Džrbashan,Theory of factorization of functions meromorphic in the disk, Math. USSR-Sb.8 (1969), 493–592. · Zbl 0197.35504
[3] J. Garnett,Analytic Capacity and Measure, Springer Lecture Notes in Mathematics291, 1972, p. 80, ex. 4.7. · Zbl 0253.30014
[4] C. A. Horowitz,Zeros of functions in the Bergman spaces, Duke Math. J.41 (1974), 693–710. · Zbl 0293.30035
[5] C. A. Horowitz,Factorization theorems for functions in the Bergman spaces, Duke Math. J.44 (1977), 201–213. · Zbl 0362.30031
[6] B. Korenblum,An extension of the Nevanlinna theory, Acta Math.135 (1976), 187–219. · Zbl 0323.30030
[7] G. Polya and G. Szegö,Problems and Theorems in Analysis, Vol. I, Part II, Springer Verlag, Berlin, 1972, p. 77, problem 112.
[8] I. I. Priwalow,Randeigenschaften analytischer Funktionen, VEB, Berlin, 1957, p. 240.
[9] H. S. Shapiro and A. L. Shields,On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z.80 (1962), 217–229. · Zbl 0115.06301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.