×

zbMATH — the first resource for mathematics

On limit properties of phases and of central dispersions in the oscillatory equation y”=q(t)y with a periodic coefficient. (English) Zbl 0498.34017
MSC:
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Borůvka O.: Linear Differential Transformations of the Second Order. English Univ. Press, London, 1971. · Zbl 0218.34005
[2] Borůvka O.: On central dispersions of the differential equation y” = q(t) y with periodic coefficients. Lecture Notes in Mathematics, 415 (1974), 47-60.
[3] Borůvka O.: Sur les blocs des équations différentielles y” = q(t)y aux coefficients périodique. Rend. Mat. 8 (1975), 519-532. · Zbl 0326.34007
[4] Borůvka O.: Sur quelques compléments á la théorie de Floquet pour les équations différentielles du deuxiéme ordre. Ann. Mat. Pura Appl. S. IV, CII (1975), 71-77. · Zbl 0311.34012
[5] Борувка О.: Тєоруя глобалъных свойсмв обыкновєнных лунєйных дуффєрєнцуалъных уравнєнуй вморого порядка. Диффєрєнциальныє уравнєния, No 8, T. 12, 1976, 1347-1383.
[6] Єндовицкий И. И.: Условуя усмойчувосму рєшєнуй лунєйного дуффєрєнцуалъного уравнєнуя вморого порядка с пєруодучєскум коэффуцуєнмом. Изв. выспшх уч. зав., мат., No 5, 1967, 28-33.
[7] Якубович В. А., Старжинский В. М.: Лунєйныє дуффєрєнцуалъныє уравнєнуя с пєруодучєскуму коэффуцуєнмаму у ух пруложєнуя. Изд. ”Наука”, Москва 1970.
[8] Magnus W., Winkler S.: Hill’s Equation. Interscience Publishers, New York, 1966. · Zbl 0158.09604
[9] Neuman F.: Note on bounded non-periodic solutions of second-order linear differential equations with periodic coefficients. Math. Nach. 39 (1969), 217-222. · Zbl 0169.41703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.