Fabes, Eugene B.; Kenig, Carlos E.; Serapioni, Raul P. The local regularity of solutions of degenerate elliptic equations. (English) Zbl 0498.35042 Commun. Partial Differ. Equations 7, 77-116 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 520 Documents MSC: 35J70 Degenerate elliptic equations 35B65 Smoothness and regularity of solutions to PDEs 35B45 A priori estimates in context of PDEs 35B50 Maximum principles in context of PDEs Keywords:local regularity; Harnack principle; non-negative solutions; weighted spaces; Poincare inequalities × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Caffarelli L., to appear in the Indiana U. Math. Journal. [2] Coifman R., Studia Math., T. LI. pp 341– (1974) [3] De Giorgi E., Mem. Accad. Sci. Torino 3 pp 25– (1957) [4] DOI: 10.1112/jlms/s2-5.1.21 · Zbl 0234.35030 · doi:10.1112/jlms/s2-5.1.21 [5] DOI: 10.1007/BF02392268 · Zbl 0258.30021 · doi:10.1007/BF02392268 [6] Jones P., Tr. Vsesoyuzn. matem. s’ezda [7] Jerrison D., Tr. Vsesoyuzn. matem. s’ezda [8] Kinderlehrer D., An Introduction to Variational Inequalities and their Applications (1930) [9] Kruzkov S.N., Soviet Mathematics 4 pp 686– (1953) [10] Littman W., Annali della Scu la pp 45– (1963) [11] DOI: 10.1002/cpa.3160140329 · Zbl 0111.09302 · doi:10.1002/cpa.3160140329 [12] Muckenhoupt B., Trans. Amer. Math. Soc. 155 pp 207– (1971) [13] DOI: 10.1090/S0002-9947-1974-0340523-6 · doi:10.1090/S0002-9947-1974-0340523-6 [14] Muckenhoupt B., Studia Math. 54 pp 221– (1976) [15] DOI: 10.1007/BF02413623 · Zbl 0185.19201 · doi:10.1007/BF02413623 [16] DOI: 10.2307/2372841 · Zbl 0096.06902 · doi:10.2307/2372841 [17] DOI: 10.5802/aif.204 · Zbl 0151.15401 · doi:10.5802/aif.204 [18] Stein E., Singular integrals and differentiability properties of functions (1970) · Zbl 0207.13501 [19] Stredulinsky E., Abstracts of the 2 (2) pp 300– (1981) [20] DOI: 10.1007/BF00282317 · Zbl 0218.35035 · doi:10.1007/BF00282317 [21] Trudinger N., Ann. Sc. Norm. Pisa. 27 pp 265– (1973) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.