Brownian motion and transient groups. (English) Zbl 0498.60012


60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
58J65 Diffusion processes and stochastic analysis on manifolds
60G50 Sums of independent random variables; random walks
Full Text: DOI Numdam EuDML


[1] H. P. MCKEAN Jr, Stochastic integrals, Academic Press, 1969. · Zbl 0191.46603
[2] N. Th. VAROPOULOS, Potential theory and diffusion on Riemannian manifolds, Zygmund 80th Birthday Volume, Chicago, 1981.
[3] D. DACUNHA-CASTELL et al., Springer verlag lecture notes, n° 678.
[4] Y. GUIVARCH et al., Springer verlag lecture notes, n° 624.
[5] N. Th. VAROPOULOS, C. R. A. S., (1982), to appear.
[6] M. GROMOV, Groups of polynomial growth and expanding maps, Publications Math. I.H.E.S., n° 53 (1981). · Zbl 0474.20018
[7] H. REITER, Classical harmonic analysis and locally compact groups, Oxford Math. Monograph, (1968), O.U.P. · Zbl 0165.15601
[8] P. BALDI, N. LOHOUÉ et J. PEYRIÈRE, C. R. A. S., Paris, t. 285 (A), (1977), 1103-1104. · Zbl 0376.60072
[9] S. Y. CHENG, P. LI and S.-T. YAU, On the upper estimate of the heat kernel of a complete Riemannian manifold, American J. Math., Vol. 103, n° 5 (1981), 1021-1063. · Zbl 0484.53035
[10] J. CHEEGER and S. T. YAU, A lower bound of the heat kernel, Comm. on Pure and Appl. Math., Vol. XXXIV (1981), 465-480. · Zbl 0481.35003
[11] J. MILNOR, A note on curvature and fundamental group., J. Diff. Geom., 2 (1968), 1-7. · Zbl 0162.25401
[12] T. J. LYONS and H. P. MCKEAN, Winding of the plane Brownian motion (preprint). · Zbl 0541.60075
[13] W. FELLER, An introduction to probability theory and its applications (3rd Edition), Wiley. · Zbl 0155.23101
[14] R. BROOKS, Amenability and the spectrum of the Laplacian, Bull. Amer. Math. Soc., Vol. 6, 87-89 (1982), n° 1. · Zbl 0489.58033
[15] N. Th. VAROPOULOS, Random walks on soluble groups, Bull. Sci. Math. (to appear). · Zbl 0532.60009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.