×

Algebraic and topological aspects of the regulator problem for lumped linear systems. (English) Zbl 0498.93013


MSC:

93B25 Algebraic methods
93D20 Asymptotic stability in control theory
93B35 Sensitivity (robustness)
15A30 Algebraic systems of matrices
15A23 Factorization of matrices
54H10 Topological representations of algebraic systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antsaklis, P. J.; Pearson, J. B., Stabilization and regulation in linear multivariable systems, IEEE Trans Aut. Control, AC-23, 928 (1978) · Zbl 0388.93036
[2] Bengtsson, G., Output regulation and internal models—a frequency domain approach, Automatica, 13, 333 (1977) · Zbl 0359.93009
[3] Callier, F. M.; Desoer, C. A., Stabilization, tracking and disturbance rejection in multivariable convolution systems, Ann. Soc. Sci. Bruxelles, 94, 7 (1980) · Zbl 0439.93048
[4] Cheng, L.; Pearson, J. B., Frequency domain synthesis of multivariable linear regulators, IEEE Trans Aut. Control, AC-23, 3 (1978) · Zbl 0379.93037
[5] Cheng, L.; Pearson, J. B., Synthesis of linear multivariable regulators, IEEE Trans Aut. Control, AC-26, 194 (1981) · Zbl 0465.93044
[6] Desoer, C. A.; Callier, F. M.; Chan, W. S., Robustness of stability conditions for linear time-invariant feedback systems, IEEE Trans Aut. Control, AC-22, 586 (1977) · Zbl 0361.93037
[7] Desoer, C. A.; Wang, Y. T., On the minimum order of a robust servo-compensator, IEEE Trans Aut. Control, AC-23, 70 (1978) · Zbl 0388.93030
[8] Desoer, C. A.; Liu, R. W.; Murray, J.; Saeks, R., Feedback system design: the fractional representation approach to analysis and synthesis, IEEE Trans Aut. Control, AC-25, 399 (1980) · Zbl 0442.93024
[9] Desoer, C. A.; Vidyasagar, M., (Feedback Systems: Input-Output Properties (1975), Academic Press: Academic Press New York) · Zbl 0327.93009
[10] Francis, B. A., The multivariable servomechanism problem from the input-output viewpoint, IEEE Trans Aut. Control, AC-22, 322 (1977) · Zbl 0354.93050
[11] Francis, B. A., On robustness of the stability of feedback systems, IEEE Trans Aut. Control, AC-25, 817 (1980) · Zbl 0451.93045
[12] Hung, N. T.; Anderson, B. D.O., Triangularization technique for the design of multivariable control systems, IEEE Trans Aut. Control, AC-24, 455 (1979) · Zbl 0411.93015
[13] Kailath, T., (Linear Systems (1980), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) · Zbl 0458.93025
[14] Kucera, V., Algebraic theory of discrete optimal control for multivariable systems, Kybernetika (Prague), 10-12, 1 (1974)
[15] Kucera, V., Stability of discrete linear feedback systems, (Proc. 6th IFAC Congress. Proc. 6th IFAC Congress, Boston (1975))
[16] Kucera, V., (Discrete Linear Control: The Polynomial Equation Approach (1979), Wiley-Interscience: Wiley-Interscience New York) · Zbl 0432.93001
[17] MacDuffee, C. C., The Theory of Matrices. Chelsea, New York (1946) · Zbl 0007.19507
[18] Pernebo, L., An algebraic theory for design of controllers for linear multivariable systems, Parts 1 and 2, IEEE Trans Aut. Control, AC-26, 171 (1981) · Zbl 0467.93040
[19] Royden, H. L., (Real Analysis (1968), Macmillan: Macmillan New York) · Zbl 0197.03501
[20] Rudin, W., (Functional Analysis (1973), McGraw-Hill: McGraw-Hill New York) · Zbl 0253.46001
[21] Saeks, R.; Murray, J., Feedback system design: the tracking and disturbance rejection problems, IEEE Trans Aut. Control, AC-26, 203 (1981)
[22] Vidyasagar, M., On the use of right-coprime factorizations in distributed feedback systems containing unstable subsystems, IEEE Trans Circuits & Systems, CAS-25, 916 (1978) · Zbl 0405.93024
[23] Vidyasagar, M.; Schneider, H.; Francis, B. A., Algebraic and topological aspects of feedback stabilization, IEEE Trans Aut. Control, AC-27, 880 (1982) · Zbl 0486.93051
[24] Wolovich, W. A., Multivariable system synthesis with step disturbance rejection, IEEE Trans Aut. Control, AC-19, 127 (1974) · Zbl 0301.93029
[25] Wolovich, W. A.; Ferreira, P., Output regulation and traching in linear multivariable systems, IEEE Trans Aut. Control, AC-24, 460 (1979) · Zbl 0411.93016
[26] Youla, D. C.; Jabr, H. A.; Bongiorno, J. J., Modern Wiener-Hopf design of optimal controllers—part II, IEEE Trans Aut. Control, AC-21, 319 (1976) · Zbl 0339.93035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.