×

A trace formula for reductive groups. II: Applications of a truncation operator. (English) Zbl 0499.10033


MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E46 Semisimple Lie groups and their representations

Citations:

Zbl 0495.22006

References:

[1] J. Arthur : (a) The characters of discrete series as orbital integrals . Inv. Math. 32 (1976) 205-261. · Zbl 0359.22008 · doi:10.1007/BF01425569
[2] Eisenstein series and the trace formula, in Automorphic Forms, Representations and L-functions , A. M. S., 1979. · Zbl 0431.22016
[3] A trace formula for reductive groups I . Duke Math. J. 45 (1978) 911-952. · Zbl 0499.10032 · doi:10.1215/S0012-7094-78-04542-8
[4] A. Borel : Ensembles fundamentaux pour les groups arithmétiques et forms automorphes , E. N. S., 1967.
[5] Harish-Chandra : Automorphic forms on semisimple Lie groups . Springer-Verlag, 1968. · Zbl 0186.04702
[6] R. Langlands : (a) Eisenstein series, in Algebraic groups and discontinuous subgroups . A. M. S. 1966. · Zbl 0204.09603
[7] On the functional equations satisfied by Eisenstein , series, Springer-Verlag, 1976. · Zbl 0332.10018 · doi:10.1007/BFb0079929
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.