×

Commutative semifields, two dimensional over their middle nuclei. (English) Zbl 0499.12021


MSC:

12K10 Semifields
51E15 Finite affine and projective planes (geometric aspects)

Citations:

Zbl 0128.256
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dembowski, P., Finite Geometries (1968), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0159.50001
[2] Hughes, D. R.; Piper, F. C., Projective Planes (1973), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0267.50018
[3] Jha, V., On tangentially transitive translation planes and related systems, Geom. Dedicata, 4, 457-483 (1975) · Zbl 0329.50013
[4] Knuth, D. E., Finite semifields and projective planes, J. Algebra, 2, 182-217 (1965) · Zbl 0128.25604
[5] Ostrom, T. G., Semi-translation planes, Trans. Amer. Math. Soc., 111, 1-18 (1964) · Zbl 0117.37303
[6] Perel’muter, G. I., On certain sums of characters, Uspehi. Mat. Nauk., 18, 145-149 (1963) · Zbl 0146.05202
[7] Vaughan, T. P., Polynomials and linear transformations over finite fields, J. Reine Angew. Math., 262, 179-206 (1974) · Zbl 0293.12014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.