×

A cartesian closed extension of a category of affine schemes. (English) Zbl 0499.18004


MSC:

18A35 Categories admitting limits (complete categories), functors preserving limits, completions
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
14A15 Schemes and morphisms
18D99 Categorical structures
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] 1 T. Brocker , Differentiable germs and catastrophes , Cambridge Univ. Press , Cambridge , 1975 . MR 494220 | Zbl 0302.58006 · Zbl 0302.58006
[2] 2 P. Cherenack , Basic aspects of unirational homotopy theory , Q uestiones Math. 3 ( 1978 ), 83 - 113 . MR 518171 | Zbl 0392.14004 · Zbl 0392.14004
[3] 3 P. Cherenack , Internal hom-sets in an extension of affine schemes over a field , in Algebraic Geometry, Proc. Summer Meet. Copenh . 1978 , Springer . MR 555689 | Zbl 0406.14009 · Zbl 0406.14009
[4] 4 M. Demazure & P. Gabriel , Groupes algébriques I , North Holland , 1970 . · Zbl 0203.23401
[5] 5 C. Ehresmann , Les prolongements d’une variété différentiable I , C. R. A. S. Paris 233 ( 1951 ), 598 - 600 . MR 44198 | Zbl 0043.17401 · Zbl 0043.17401
[6] 6 M. Golubitsky & V. Guill Emin , Stable mappings and their singularities , Springer , 1973 . MR 341518 | Zbl 0294.58004 · Zbl 0294.58004
[7] 7 A. Grothendick , Eléments de géométrie algébrique I , Springer , 1970 .
[8] 8 R. Hartshorne , Algebraic Geometry , Springer , 1977 . MR 463157 | Zbl 0367.14001 · Zbl 0367.14001
[9] 9 P.J. Huber , Homotopy theory in general categories , Math. Annal. 144 ( 1961 ) 361 - 385 . MR 150184 | Zbl 0099.17905 · Zbl 0099.17905
[10] 10 S. Lang , Hilbert’s Nullstellensatz in infinite dimensional space , Proc. A.M. S. 3 ( 1952 ), 407 - 410 . MR 47019 | Zbl 0049.30405 · Zbl 0049.30405
[11] 11 S. Mac Lane , Categories for the working mathematician , Springer , 1971 . MR 1712872 | Zbl 0906.18001 · Zbl 0906.18001
[12] 12 R.L. Vander Waerden , Modern Algebra , Ungar Publ. Co , New-York , 1940 . Zbl 0039.00902 · Zbl 0039.00902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.