Uhlenbeck, Karen K. Connections with \(L^ p \)bounds on curvature. (English) Zbl 0499.58019 Commun. Math. Phys. 83, 31-42 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 ReviewsCited in 290 Documents MSC: 53D50 Geometric quantization 81T08 Constructive quantum field theory 53C05 Connections (general theory) 58C15 Implicit function theorems; global Newton methods on manifolds Keywords:Lp bounds on curvature; Coulomb gauges; weak compactness theorem for fields × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bourguignon, J. P. Lawson, H. B., Jr.: Commun. Math. Phys.79, 189–230 (1981) · Zbl 0475.53060 · doi:10.1007/BF01942061 [2] Hamilton, R.: Harmonic maps of manifolds with boundary. In: Lecture Notes in Mathematics, Vol. 471 Berlin, Heidelberg, New York: Springer 1975 · Zbl 0308.35003 [3] Husemoller, D.: Fibre bundles (Chap. 5). In: Graduate Texts in Mathematics, Vol. 20. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0144.44804 [4] Morrey, C. B., Jr.: Multiple integrals in the calculus of variations. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0142.38701 [5] Palais, R. S.: Foundations of global non-linear analysis. New York: Benjamin, 1968 · Zbl 0164.11102 [6] Steenrod, N.: The topology of fibre bundles (Part I). Princeton, New Jersey: Princeton University Press, 1951 · Zbl 0054.07103 [7] Taubes, C.: Existence of multimonopole solutions to the static SU (2) Yang-Mills-Higgs equations in the Prasad-Summerfield limit. See Jaffe, A. and Taubes, C., Vortices and Monopoles, Boston: Birkhäuser 1980 [8] Uhlenbeck, K.: Removable singularities in Yang-Mills fields, Commun. Math. Phys.83, 11–29 (1982) · Zbl 0491.58032 · doi:10.1007/BF01947068 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.