×

zbMATH — the first resource for mathematics

Accuracy of some finite element models for arch problems. (English) Zbl 0499.73068

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ()
[2] Yamada, Y.; Ezawa, Y., On curved finite elements for the analysis of circular arches, Internat. J. numer. meths. engrg., 11, 1635-1651, (1977) · Zbl 0367.73077
[3] Lions, J.L., Perturbations singulières dans LES problèmes aux limites et en contrôle optimal, (), No. 323 · Zbl 0268.49001
[4] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[5] Bercovier, M., Perturbation of mixed variational problems; application to mixed finite element methods, RAIRO, analyse numerique, 12, 211-236, (1978) · Zbl 0428.65059
[6] Arnold, D.N., Discretization by finite elements of a model parameter dependent problem, Numer. math., 37, 405-421, (1981) · Zbl 0446.73066
[7] Kikuchi, F., On the validity of the finite element analysis of circular arches represented by an assemblage of beam elements, Comput. meths. appl. mech. engrg., 5, 253-276, (1975) · Zbl 0301.73023
[8] Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M., Reduced integration techniques in general analysis of plates and shells, Internat. J. numer. meths. engrg., 5, 275-290, (1971) · Zbl 0253.73048
[9] Hughes, T.J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nuclear engrg. design, 46, 203-222, (1978)
[10] Malkus, D.S.; Hughes, T.J.R., Mixed finite element methods—reduced and selective integration techniques: a unification of concepts, Comput. meths. appl. mech. engrg., 15, 63-81, (1978) · Zbl 0381.73075
[11] J.T. Oden and N. Kikuchi, Finite element methods for constrained problems in elasticity, Internat. J. Numer. Meths. Engrg. (to appear). · Zbl 0486.73068
[12] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and shells, (1959), McGraw-Hill New York · Zbl 0114.40801
[13] Dym, C.L.; Shames, I.H., Solid mechanics: A variational approach, (1973), McGraw-Hill New York
[14] Babuska, I.; Aziz, A.K., Survey lectures on the finite element method, (), 5-359
[15] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, Rairo, 8, 129-151, (1974) · Zbl 0338.90047
[16] Nitsche, J., Ein kriterium für die quasi-optimaltät des ritzschen verfahrens, Numer. math., 11, 346-348, (1968) · Zbl 0175.45801
[17] Bathe, K.J.; Wilson, E.L., Numerical methods in finite element analysis, (1976), Prentice-Hall Englewood Cliffs, NJ · Zbl 0528.65053
[18] Aubin, J.P., Approximation of elliptic boundary-value problems, (1972), Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.