×

zbMATH — the first resource for mathematics

Algebraic K-theory eventually surjects onto topological K-theory. (English) Zbl 0501.14013

MSC:
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
55N15 Topological \(K\)-theory
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
55S25 \(K\)-theory operations and generalized cohomology operations in algebraic topology
14F20 Étale and other Grothendieck topologies and (co)homologies
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Artin, M., Grothendieck, A., Verdier, J.-L.: Theorie des topos et cohomologie etale des schemas. Lecture Notes in Math. Vols. 269, 270, pp. 305. Berlin-Heidelberg-New York: Springer 1972-73
[2] Bousfield, A.K., Kan, D.M.: Homotopy limits, completions, and localizations. Lecture Notes in Math. Vol. 304. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0259.55004
[3] Browder, W.: AlgebraicK-theory with coefficients ?/p. Springer Lecture Notes in Math. Vol. 651, pp. 40-84. Berlin-Heidelberg-New York: Springer 1973
[4] Deligne, P.: Cohomogie etale: SGA 4 1/2. Lecture Notes in Math. Vol. 569. Berlin-Heidelberg-New York: Springer 1977 · Zbl 0345.00010
[5] Dwyer, W., Friedlander, E.: EtaleK-theory and arithmetic, Bull, A.M.S. (in press 1982)
[6] Friedlander, E.M.: EtaleK-theory I: Connections with etale cohomology and algebraic vector bundles. Invent. Math.60, 105-134 (1980) · Zbl 0519.14010 · doi:10.1007/BF01405150
[7] Friedlander, E.M.: EtaleK-theory II: Connections with algebraicK-theory. Ann. Scient. Éc. Norm. Sup. (in press 1982)
[8] Friedlander, E.M.: Etale homotopy of simplicial schemes. Princeton University Press (in press 1982) · Zbl 0538.55001
[9] Fulton, W.: Riemann-Roch for singular varieties. Algebraic Geometry: Arcata 1974, Amer. Math. Soc. 1975, pp. 449-457
[10] Jouanolou, J.P.: Une suite exacte de Mayer-Vietoris enK-theorie algebrique. Lecture Notes in Math. Vol. 341, pp. 293-316. Berlin-Heidelberg-New York: Springer 1973
[11] Snaith, V.: Algebraic cobordism andK-theory. Memoir of the Amer. Math. Soc.221, (1979)
[12] Snaith, V.: AlgebraicK-theory and localized stable homotopy. (Preprint)
[13] Soulé, C.:K-theorie des anneaux d’entiers de corps de nombres et cohomologie etale. Invent. Math.55, 251-295 (1979) · Zbl 0437.12008 · doi:10.1007/BF01406843
[14] Thomason, R.W.: AlgebraicK-theory and etale cohomology. (Preprint)
[15] Thomason, R.W.: Riemann-Roch for algebraic vs. topologicalK-theory. (In press 1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.