×

zbMATH — the first resource for mathematics

Coercive singular perturbations. II: Reduction to regular perturbations and applications. (English) Zbl 0501.35007

MSC:
35B25 Singular perturbations in context of PDEs
35B20 Perturbations in context of PDEs
35C20 Asymptotic expansions of solutions to PDEs
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boutet de Monvel L., Acta Math. 126 (1) pp 11– (1971) · Zbl 0206.39401
[2] Demidov A., Math. USSR Sbornik 20 pp 439– (1973) · Zbl 0285.35064
[3] Fife P.C., Annali di Mat. Pura Appl. (IV) 90 pp 99– (1971) · Zbl 0229.35030
[4] Frank L.S., Annali di Mat. Pura Appl.(IV) 114 pp 27– (1977) · Zbl 0369.34011
[5] Frank L.S., Annali di Mat. Pura Appl.(IV) 119 pp 41– (1979) · Zbl 0468.35011
[6] Frank, L.S. and Wendt, W.D. 198. ”Isomorphic elliptic singular perturbations”. Nijmegen Report 8003, K. U. · Zbl 0627.35003
[7] Frank, L.S. and Wendt, W.D. 1981. ”Coercive singular perturbations, in: Analytical and Numerical approaches to asymptotic problems in analysis”. Edited by: Axelsson, 0., Frank, L.S. and van der Sluis, A. 305–318. North-Holland
[8] Friedrichs 0., Arner. J . Math. 63 pp 839– (1941) · Zbl 0026.16301
[9] Kàlrmán T. v., in: Encyklopädie der Mathematischen Wissenschaften 4 (1907)
[10] Kohn J., Comm. Pure and Appl. Math. 18 pp 269– (1965) · Zbl 0171.35101
[11] Lions, J.L. 1973. ”Perturbations singuliéres dans les problélmes aux limites et en contröble optimale”. Berlin, New York: Springer-Verlag.
[12] Schur J., Journal für reine und angew. Math. Bd. 140 pp 1– (1911)
[13] Trenogin A., Uspekhi Mat. Nauk 25 (4) pp 123– (1970)
[14] Vishik M., Amer. Math. Soc. Transl. 12 (5) pp 3– (1957)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.