×

Nonlinear programming via an exact penalty function: Global analysis. (English) Zbl 0501.90077


MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
90C20 Quadratic programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Asaadi, ”A computational comparison of some nonlinear programs”,Mathematical Programming 4 (1973) 144–154. · Zbl 0259.90044
[2] R.H. Bartels, A.R. Conn and J.W. Sinclair, ”Minimization techniques for piecewise differentiable functions: Thel 1 solution to an overdetermined linear system”,SIAM Journal on Numerical Analysis 15 (1978) 224–241. · Zbl 0376.65018
[3] R.M. Chamberlain, ”Some examples of cycling in variable metric methods for constrained optimization”,Mathematical Programming 16 (1979) 378–383. · Zbl 0402.90088
[4] C. Charalambous, ”A lower bound for the controlling parameter of the exact penalty function”,Mathematical Programming 15 (1978) 278–290. · Zbl 0395.90071
[5] C. Charalambous, ”On the conditions for optimality for the nonlinearl 1 problem”,Mathematical Programming 17 (1979) 123–135. · Zbl 0436.90095
[6] T.F. Coleman and A.R. Conn, ”Second-order conditions for an exact penalty function”,Mathematical Programming 19 (1980) 178–185. · Zbl 0441.65053
[7] T.F. Coleman and A.R. Conn, ”Nonlinear programming via an exact penalty function: Asymptotic analysis”,Mathematical Programming 24 (1982) 123–136. [This issue.]. · Zbl 0501.90078
[8] A.R. Colville, ”A comparative study of non-linear programming codes”, IBM New York Scientific Center Report 320-2949 (1968).
[9] A.R. Conn and T. Pietrzykowski, ”A penalty function method converging directly to a constrained optimum”,SIAM Journal on Numerical Analysis 14 (1977) 348–375. · Zbl 0361.90076
[10] P. Gill and W. Murray,Numerical methods for constrained optimization (Academic Press, London, 1974). · Zbl 0297.90082
[11] W. Murray and M. Wright, ”Projected Lagrangian methods based on the trajectories of penalty and barrier functions”, Technical Report SOL 78-23 Department of Operations Research, Stanford University (Stanford, CA, 1978).
[12] W. Murray and M. Overton, ”Steplength algorithms for minimizing a class of non-differentiable functions”,Computing 23 (1979) 309–331. · Zbl 0445.65060
[13] M.J.D. Powell, ”A method for non-linear constraints in minimization problems” in: R. Fletcher, ed.,Optimization (Academic Press, London, 1969). · Zbl 0194.47701
[14] J.B. Rosen and S. Suzuki, ”Construction of non-linear programming test problems”,Communications of the ACM 8 (1965) 113.
[15] W. Zangwill, ”Nonlinear programming via penalty functions”,Management Science 13 (1967) 344–350. · Zbl 0171.18202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.