×

zbMATH — the first resource for mathematics

Weyl groups, the hard Lefschetz theorem, and the Sperner property. (English) Zbl 0502.05004

MSC:
05A05 Permutations, words, matrices
05A15 Exact enumeration problems, generating functions
14L35 Classical groups (algebro-geometric aspects)
06A06 Partial orders, general
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitken, A. C., Determinants and Matrices, (1944) · Zbl 0060.03106
[2] Andrews, GeorgeE., A theorem on reciprocal polynomials with applications to permutations and compositions, Amer. Math. Monthly, 82, 830, (1975) · Zbl 0313.05006
[3] Birkhoff, Garrett, Lattice theory, (1967) · Zbl 0153.02501
[4] Borel, Armand; Haefliger, André, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France, 89, 461, (1961) · Zbl 0102.38502
[5] Borel, Armand; Tits, Jacques, Compléments à l’article: “groupes réductifs”, Inst. Hautes Études Sci. Publ. Math., 253, (1972) · Zbl 0254.14018
[6] Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, (1968) · Zbl 0186.33001
[7] Canfield, E. Rodney, A sperner property preserved by product, Linear and Multilinear Algebra, 9, 151, (1980) · Zbl 0449.15020
[8] Carter, RogerW., Simple groups of Lie type, (1972) · Zbl 0248.20015
[9] Comtet, Louis, Advanced combinatorics, (1974) · Zbl 0283.05001
[10] Cornalba, Maurizio; Griffiths, PhillipA.; Hartshorne, R., Some transcendental aspects of algebraic geometry, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), 3, (1975), Amer. Math. Soc., Providence, R.I. · Zbl 0309.14007
[11] Deodhar, VinayV., Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math., 39, 187, (1977) · Zbl 0346.20032
[12] Entringer, R. C., Representation of m as \(∑ \sb{k=-n}\sp{n}\,ε \sb{k}k\), Canad. Math. Bull., 11, 289, (1968) · Zbl 0164.05003
[13] Erdo˝s, P.; Whiteman, A. L., Extremal problems in number theory, Proc. Sympos. Pure Math., Vol. VIII, 181, (1965), Amer. Math. Soc., Providence, R.I. · Zbl 0144.28103
[14] Fulton, William, Rational equivalence on singular varieties, Inst. Hautes Études Sci. Publ. Math., 147, (1975) · Zbl 0332.14002
[15] Greene, Curtis, Some partitions associated with a partially ordered set, J. Combinatorial Theory Ser. A, 20, 69, (1976) · Zbl 0323.06002
[16] Greene, Curtis; Kleitman, DanielJ., The structure of sperner k-families, J. Combinatorial Theory Ser. A, 20, 41, (1976) · Zbl 0363.05006
[17] Greene, Curtis; Kleitman, DanielJ.; Rota, G.-C., Proof techniques in the theory of finite sets, Studies in combinatorics, 17, 22, (1978), Math. Assoc. America, Washington, D.C. · Zbl 0409.05012
[18] Griffiths, P.; Adams, J., Topics in algebraic and analytic geometry, (1974) · Zbl 0302.14003
[19] Griffiths, Phillip; Harris, Joseph, Principles of algebraic geometry, (1978) · Zbl 0408.14001
[20] Griggs, JerroldR., Sufficient conditions for a symmetric chain order, SIAM J. Appl. Math., 32, 807, (1977) · Zbl 0359.06004
[21] Griggs, JerroldR., On chains and sperner k-families in ranked posets, J. Combin. Theory Ser. A, 28, 156, (1980) · Zbl 0433.06003
[22] Sur quelques propriétés fondamentales en théorie des intersectionsSéminaire C. ChevalleyVol. 2Ecole Normale SupérieureParis1958Chap. 4
[23] Harper, L. H., Stabilization and the edgesum problem, Ars Combinatoria, 4, 225, (1977) · Zbl 0406.05055
[24] Hodge, W. V. D., The theory and applications of harmonic integrals, (1952) · Zbl 0048.15702
[25] Hughes, J. W. B.; Zassenhaus, H., Lie algebraic proofs of some theorems on partitions, Number theory and algebra, 135, (1977), Academic Press, New York · Zbl 0372.10010
[26] Kleiman, StevenL.; Browder, F. E., Problem 15: rigorous foundation of Schubert’s enumerative calculus, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), (1976), Amer. Math. Soc., Providence, R. I. · Zbl 0336.14001
[27] Kleiman, S. L.; Laksov, Dan, Schubert calculus, Amer. Math. Monthly, 79, 1061, (1972) · Zbl 0272.14016
[28] Lakshmibai, V.; Musili, C.; Seshadri, C. S., Geometry of \(G/P\), Bull. Amer. Math. Soc. (N.S.), 1, 432, (1979) · Zbl 0466.14020
[29] Lefschetz, S., L’analysis situs et la géométrie algébrique, (1924) · JFM 50.0663.01
[30] Lindström, B.; Guy, R.; Hanani, H.; Sauer, N.; Schonheim, J., Conjecture on a theorem simliar to Sperner’s, Combinatorial Structures And Their Applications, 241, (1970), Gordon and Breach, New York
[31] Lindström, Bernt, An elementary combinatorial theorem and some applications, Nordisk Mat. Tidskr, 17, (1969) · Zbl 0183.29704
[32] Lindström, Bernt, A partition of \(L(3,\,n)\) into saturated symmetric chains, European J. Combin., 1, 61, (1980) · Zbl 0445.05018
[33] Littlewood, D. E., The Theory of Group Characters and Matrix Representations of Groups, (1950) · Zbl 0038.16504
[34] Messing, William; Hartshorne, R., Short sketch of Deligne’s proof of the hard Lefschetz theorem, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), 563, (1975), Amer. Math. Soc., Providence, R.I. · Zbl 0321.14013
[35] Peck, G. W., Erdo˝s conjecture on sums of distinct numbers, Stud. Appl. Math., 63, 87, (1980) · Zbl 0452.05005
[36] Proctor, RobertA.; Saks, MichaelE.; Sturtevant, DeanG., Product partial orders with the sperner property, Discrete Math., 30, 173, (1980) · Zbl 0458.06001
[37] Saks, M. E., Dilworth numbers, incidence maps and product partial orders, SIAM J. Algebraic Discrete Methods, 1, 211, (1980) · Zbl 0501.06003
[38] Sárközi, A.; Szemerédi, E., Über ein problem von erdo˝s und Moser, Acta Arith., 11, 205, (1965) · Zbl 0134.27801
[39] Seshadri, C. S., Geometry of G/P. I. theory of standard monomials for minuscule representations, C. P. Ramanujam—a tribute, 8, 207, (1978), Springer, Berlin · Zbl 0447.14010
[40] Stanley, R., Unimodal sequences arising from Lie algebras, Combinatorics, representation theory and statistical methods in groups, 57, 127, (1980), Dekker, New York · Zbl 0451.05004
[41] Stanley, R.; Foata, D., Some combinatorial aspects of the Schubert calculus, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), (1977), Springer, Berlin · Zbl 0359.05006
[42] van Lint, J. H., Representation of 0 as \(∑ \sp{N}\sb{K=-N}\,ε \sb{k}k\), Proc. Amer. Math. Soc., 18, 182, (1967) · Zbl 0152.03401
[43] Weil, André, Introduction à l’étude des variétés kählériennes, 175, (1958) · Zbl 0137.41103
[44] West, DouglasB., A symmetric chain decomposition of \(L(4,\,n)\), European J. Combin., 1, 379, (1980) · Zbl 0447.06004
[45] Aitken, A. C., The normal form of compound and induced matrices, Proc. London Math. Soc., 2, 354, (1934) · Zbl 0010.29102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.