Kloosterman sums and Fourier coefficients of cusp forms. (English) Zbl 0502.10021


11L05 Gauss and Kloosterman sums; generalizations
11F30 Fourier coefficients of automorphic forms
11F11 Holomorphic modular forms of integral weight
11N35 Sieves
11N37 Asymptotic results on arithmetic functions
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
Full Text: DOI EuDML


[1] [Bru] Bruggeman, R.W.: Fourier coefficients of cusp forms. Invent. Math.45, 1-18 (1978) · doi:10.1007/BF01406220
[2] [Bus] Buser, P.: On Cheeger’s inequality? 1?h 2/4. Proc. Symposia, in Pure Math., XXXVI, pp. 29-77 AMS, Providence 1981
[3] [Che] Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. Problems in Analysis, A symposium in honour of Bochner, Princeton University Press, Princeton, N.J. 1970 pp. 195-199
[4] [Del] Deligne, P.: La conjecture de Weil I. Publ. Math. I.H.E.S.,43, 273-307 (1974)
[5] [Dl 1] Deshouillers, J.-M., Iwaniec, H.: On the greatest prime factor ofn 2+1 Ann. Inst. Fourier. in press (1982) · Zbl 0489.10038
[6] [DI2] Deshouillers, J.-M., Iwaniec, H.: An additive divisor problem. J. London Math. Soc.26, (2), 1-14 (1982) · doi:10.1112/jlms/s2-26.1.1
[7] [Di3] Deshouillers, J.-M., Iwaniec, H.: Power mean-values for the Riemann zeta-function. Mathematika in press (1982) · Zbl 0506.10032
[8] [DI4] Deshouillers, J.-M., Iwaniec, H.: On the Brun-Titchmarsh theorem and the greatest prime factor ofp+a. Proc. Janos Bolyai Soc. Conf. in press (1982)
[9] [EMOT] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions II. New York-Toronto-London: Mc Graw-Hill 1953 · Zbl 0052.29502
[10] [Fad] Faddeev, L.D.: Expansions in eigenfunctions of the Laplace operator in the fundamental domain of a discrete group on the Loba?evskii plane. Trudy Moscov, Mat. Obsc.,17, 323-350 (1967) · Zbl 0201.41601
[11] [G-R] Gradsztejn, I.S., Ry?yk, I.M.: Tablice ca?ek, sum, szeregów i iloczynow. PWN-Warszawa, 1964
[12] [Gun] Gunning, R.C.: Lectures on modular forms. Princeton University Press, 1962 · Zbl 0178.42901
[13] [H.-B.] Heath-Brown, D.R.: The fourth power moment of the Riemann zeta-function. Proceeding London Math. Soc.38(3), 385-422 (1979) · Zbl 0403.10018 · doi:10.1112/plms/s3-38.3.385
[14] [Hej] Hejhal, D.A.: Some observations concerning eigenvalues of the Laplacian and DirichletL-series in Recent progress in analytic number theory. London: Academic Press 1981
[15] [Hoo] Hooley, C.: On the greatest prime factor of a quadratic polynomial. Acta Math.117, 281-299 (1967) · Zbl 0146.05704 · doi:10.1007/BF02395047
[16] [Iwa 1] Iwaniec, H.: Fourier coefficients of cusp forms and the Riemann zeta-function. Sém. Th. Nb. Bordeaux (1979-1980), exposé no18,36 pages
[17] [Iwa 2] Iwaniec, H.: Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums. Proceedings from the Journées Arithmétiques at Exeter in press (1982) · Zbl 0494.10035
[18] [Iwa 3] Iwaniec, H.: On mean values for Dirichlet’s polynomials and the Riemann zeta-function. J. London Math. Soc.22, (2), 39-45 (1980) · Zbl 0439.10026 · doi:10.1112/jlms/s2-22.1.39
[19] [Iwa 4] Iwaniec, H.: On the Brun-Titchmarsh theorem. J. Math. Soc. Japan34, 95-123 (1982) · Zbl 0486.10033 · doi:10.2969/jmsj/03410095
[20] [Kub] Kubota, T.: Elementary Theory of Eisenstein Series. New-York: John Wiley and Sons 1973 · Zbl 0268.10012
[21] [Kuz1] Kuznietsov, N.V.: Petersson hypothesis for forms of weight zero and Linnik hypothesis (in Russian), Preprint no02, Khab. KHII, Khabarovsk 1977
[22] [Kuz2] Kuznietsov, N.V.: Petersson hypothesis for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloostermann sums. Math. Sbornik111, (153), no3, 334-383 (1980)
[23] [Lin] Linnik, Yu.V.: Additive problems and eigenvalues of the modular operators. Proc. Internat. Congr. Math. Stockholm 270-284 (1962)
[24] [Maa1] Maass, H.: Über eine neue Art von nichtanalytischen automorphen Funktionen. Math. Ann.121, (o2) 141-183 (1949) · Zbl 0034.31702 · doi:10.1007/BF01329622
[25] [Maa2] Maass, H.: On modular functions of one complex variable. Tata Institute, Bombay, 1964 · Zbl 0254.10018
[26] [Mon] Montgomery, H.L.: Topics in multiplicative number theory. Lect. Notes in Math. vol. 227. Berlin-New-York: Springer 1971 · Zbl 0216.03501
[27] [Pet] Petersson, H.: Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math.58, 169-215 (1932) · doi:10.1007/BF02547776
[28] [Pro1] Proskurin, N.V.: Summation formulas for generalized Kloosterman sums (in Russian). Zap. Nau?n. Sem. Leningrad. Otdel. Mat. Inst. Steklov.82, 103-135 (1979)
[29] [Pro2] Proskurin, N.V.: On a hypothesis of Yu.V. Linnik (in Russian). Zap. Nau?n. Sem. Leningrad Otdel. Mat. Inst. Steklov.91, 94-118 (1979)
[30] [Pro3] Proskurin, N.V.: The estimations of the eigenvalues of Hecke’s operators in the space of parabolic forms of weight zero. Studies in Number Theory, vol. 5, 136-143 (1979). Pub. Math. Inst. Steklov · Zbl 0425.10028
[31] [Ran] Rankin, R.: Modular forms and functions. Cambridge-London-New-York: Cambridge University Press 1977 · Zbl 0376.10020
[32] [Roe1] Roelcke, W.: Über die Wellengleichung bei Grenzkreisgruppen erster Art. Sitz. Ber. Heidl. Akad. der Wiss. (Math. natur. Kl.) 1956, 4. Abh.
[33] [Roe2] Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I. II. Math. Ann.167, 292-337 (1966);168, 261-324 (1967) · Zbl 0152.07705 · doi:10.1007/BF01364540
[34] [Sel1] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet’s series. J. Indian Mat. Soc.20, 47-87 (1956) · Zbl 0072.08201
[35] [Sel2] Selberg, A.: On the estimation of Fourier coefficients of modular forms. Proc. Symposia in Pure Math. VIII, A.M.S., Providence 1965, pp. 1-15
[36] [Shi] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton: Princeton University Press 1971 · Zbl 0221.10029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.