zbMATH — the first resource for mathematics

Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux. (Différential forms and Tate modules of abelian varieties over local fields). (French) Zbl 0502.14015

14L05 Formal groups, \(p\)-divisible groups
14G20 Local ground fields in algebraic geometry
14K15 Arithmetic ground fields for abelian varieties
11S20 Galois theory
14L15 Group schemes
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
Full Text: DOI EuDML
[1] Cassels, J.W.S., Frohlich, A.: Algebraic Number Theory. London-New York: Academic Press 1967
[2] Fontaine, J.-M.: Groupesp-divisibles sur les corps locaux. Astérisque 47-48. Société Mathématique de France, Paris 1977
[3] Fontaine, J.-M.: Sur certains types de représentationsp-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate. Ann. of Maths., à paraître
[4] Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. of Maths.81, 380-387 (1965) · Zbl 0128.26501
[5] Serre, J.-P.: Corps locaux. Paris: Hermann, 2{\(\deg\)} éd. 1968
[6] Serre, J.-P.: Abelianl-Adic Representations and Elliptic Curves. New York-Amsterdam: Benjamin 1968
[7] Serre, J.-P.: Sur les groupes de Galois attachés aux groupesp-divisibles. In: Proceedings of a Conference on Local Fields, Edited by T.A. Springer Berlin-Heidelberg-New York: Springer 1967
[8] Serre, J.-P.: Résumé des cours de 1965-1966. Annuaire du Collège de France, pp. 49-58, Paris 1967
[9] Tate, J.:p-Divisible Groups. In: Proceedings of a Conference on Local Fields, Edited by T.A. Springer. Berlin-Heidelberg-New York: Springer 1967 · Zbl 0157.27601
[10] SGA7I: Groupes de Monodromie en Géométrie Algébrique. Lect. Notes in Maths. 288. Berlin-Heidelberg-New York: Springer 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.