×

zbMATH — the first resource for mathematics

Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group. (English) Zbl 0502.32017

MSC:
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
32N99 Automorphic functions
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Auslander, L., Green, L., Hahn, F.: Flows on homogeneous spaces. Ann. Math. Studies, No. 53, Princeton: Princeton University Press 1963 · Zbl 0106.36802
[2] Bers, L.: Fiber spaces over Teichmüller spaces. Acta Math.130, 89-126 (1973) · Zbl 0249.32014
[3] Bers, L.: Uniformization, moduli, and Kleinian groups. Bull. London Math. Soc.4, 257-300 (1972) · Zbl 0257.32012
[4] Earle, C.J.: Families of Riemann surfaces and Jacobi varieties. Ann. Math.107, 255-286 (1978) · Zbl 0366.32012
[5] Earle, C.J.: Roots of the canonical divisor class over Teichmüller space (preprint)
[6] Earle, C.J.: Teichmüller theory. In: Discrete groups and automorphic functions. Harvey, W.J., ed. pp. 143-161. London: Academic Press 1977
[7] Ehresmann, C.: Les connexions infinitesimals dans un espace fibre differentiable. Colloque de Topologie, Bruxelles, pp. 29-55 (1950)
[8] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978 · Zbl 0408.14001
[9] Gunning, R.: Riemann surfaces and generalized theta functions. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0341.14013
[10] Keen, L.: On Fricke moduli. In: Advances in the theory of Riemann surfaces. Ahlfors, L. et al, eds. Ann. Math. Studies, No. 66, pp. 205-224. Princeton: Princeton University Press 1971
[11] Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Phil. Soc.62, 769-778 (1964) · Zbl 0131.20801
[12] Lickorish, W.B.R.: Corrigendum: a finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Phil. Soc.62, 679-681 (1966) · Zbl 0145.44102
[13] Macbeath, A.M.: Topological background. In: Discrete groups and automorphic functions. Harvey, W.J., ed. pp. 1-46. London: Academic Press 1977
[14] Mennicke, Jens L.: Zur Theorie der Siegelschen Modulgruppe. Math. Ann.159, 115-129 (1965) · Zbl 0134.26502
[15] Munkres, J.: Topology. Englewood Cliffs: Prentice Hall 1975
[16] Mumford, D.: Abelian quotients of the Teichmüller modular group. J. Analyse Math.18, 227-244 (1967) · Zbl 0173.22903
[17] Siegel, C.L.: Topics in complex function theory, Vol. II. New York: Wiley 1971 · Zbl 0211.10501
[18] Sipe, P.L.: Roots of the canonical bundle of the universal Teichmüller curve. Thesis, Cornell University, 1979
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.