Real-time control of the free boundary in a two-phase Stefan problem. (English) Zbl 0502.49005


49J20 Existence theories for optimal control problems involving partial differential equations
35R35 Free boundary problems for PDEs
47H10 Fixed-point theorems
58C30 Fixed-point theorems on manifolds
55M20 Fixed points and coincidences in algebraic topology
80A20 Heat and mass transfer, heat flow (MSC2010)
65K10 Numerical optimization and variational techniques
Full Text: DOI


[1] Bohnenblust H.F., Contribution to the Theory of Gaines 1 pp 155– (1950)
[2] Cannon J.R., Ann. Mat. Pura Appl. 65 pp 377– (1964) · Zbl 0131.32202
[3] Cannon J.R., Ann. Mat. Pura Appl. 88 pp 193– (1971) · Zbl 0219.35047
[4] Cannon J.R., Ann. Mat. Pura Appl. 88 pp 217– (1971) · Zbl 0219.35048
[5] Ekeland, I. and Temam, R. 1976. ”Convex Analysis and Variational Problems”. Amsterdam, Oxford: North Holland Publ. Co. · Zbl 0322.90046
[6] Fasano A., J. Math. Anal. Appl. 57 pp 694– (1977) · Zbl 0348.35047
[7] Glashoff K., J. Integral Equations. 57 (1977)
[8] Glashoff K., SIAM J. Math. Anal. 12 pp 477– (1981) · Zbl 0472.45004
[9] Hoffmann K.-H., J. Albrecht, L. Collatz, (Hrsg.), ISNM 52 pp 115– (1980)
[10] Hoffmann, K.H and Niezgódka, M. 1981. Control of Parabolic Systems Involving Free Boundaries. Proceedings of the Conference on Free Boundary Problems. June1981, Montecatini. pp.18–26.
[11] Sprekels J., On the Automatic Control of the Free Boundary in a One-Phase Stefan Problem · Zbl 0499.35094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.