Nonstationary filtration in partially saturated porous media. (English) Zbl 0502.76101


76S05 Flows in porous media; filtration; seepage
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35M99 Partial differential equations of mixed type and mixed-type systems of partial differential equations
Full Text: DOI


[1] Aronson, D. G., Regularity properties of flows through porous media. SIAM J. Appl. Math. 17, 461-467 (1969). · Zbl 0187.03401
[2] Aronson, D. G., Regularity properties of flows through porous media: A counterexample. SIAM J. Appl. Math. 19, 299-307 (1970). · Zbl 0255.76099
[3] Aronson, D. G., Regularity properties of flows through porous media: The interface. Arch. Rational Mech. Anal. 37, 1-10 (1970). · Zbl 0202.37901
[4] Bear, J., Dynamics of Fluids in Porous Media. New York: American Elzevier Publishing Company Inc. 1972. · Zbl 1191.76001
[5] Caffarelli, L. A., & A. Friedman, Regularity of the free boundary for the onedimensional flow of gas in a porous medium. Amer. J. Math. 101, 1193-1218 (1979). · Zbl 0439.76084
[6] Caffarelli, L. A., & A. Friedman, Continuity of a gas flow in a porous medium. Trans. Amer. Math. Soc. 252, 99-113 (1979). · Zbl 0425.35060
[7] Fasano, A., & M. Primicerio, Liquid flow in partially saturated porous media. J. Inst. Math. Appl. 23, 503-517 (1979). · Zbl 0428.76076
[8] Friedman, A., Partial differential equations of parabolic type. Prentice Hall, Englewood Cliffs, N. J. (1964). · Zbl 0144.34903
[9] Gilding, B. H., & L. A. Peletier, The Cauchy problem for an equation in the theory of infiltration. Arch. Rational Mech. Anal. 61, 127-140 (1976). · Zbl 0336.76037
[10] Kalashnikov, A. S., The occurrence of singularities in solutions of the non-steady seepage equation. USSR Computational Math, and Math. Phys. 7, 269-275 (1967).
[11] Kalashnikov, A. S., On the differential properties of generalized solutions of equations of the nonsteady-state filtration type. Vestnik Moskovskogo Universiteta Mathematika 29, 62-68 (1974). · Zbl 0272.35016
[12] Knerr, B. F., The porous media equation in one dimension. Trans. Amer. Math. Soc. 234, 381-415 (1977). · Zbl 0365.35030
[13] Ladyzhenskaja, O. A., V. A. Solonnikov & N. N. Ural’ceva, Linear and Quasilinear Equation of Parabolic Type. Translations of Mathematical Monographs Volume 23, Providence, R.I.: American Mathematical Society 1968.
[14] Oleinik, O. A., A. S. Kalashnikov & Chzhou Yui-Lin, The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv. Akad. Nauk. SSSR Sen Mat. 22, 667-704 (1958). · Zbl 0093.10302
[15] Peletier, L. A., A necessary and sufficient condition for the existence of an interface in flows through porous media. Arch. Rational Mech. Anal. 56, 183-190 (1974). · Zbl 0294.35040
[16] Protter, M. H., & H. F. Weinberger, Maximum principles in differential equations. Prentice-Hall, Englewood Cliffs, N.J. (1967). · Zbl 0153.13602
[17] Raats, P. A. C., & W. R. Gardner, Movement of Water in the Unsaturated Zone Near a Water Table. Drainage for Agriculture, Agronomy 17, 311-405 (1974).
[18] Sabinina, E. S., On the Cauchy problem for the equation of nonstationary gas filtration in several space variables. Dokl. Akad. Nauk. SSSR 136, 1034-1037 (1961). · Zbl 0101.21101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.